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1. Introduction

1.1. Overview of QSPR Studies
All properties of organic moleculessphysical, chemical,

biological, and technologicalsdepend on their chemical
structure and vary with it in a systematic way. The establish-
ment of quantitative correlations between diverse molecular
properties and chemical structure is now of great importance
to society in assessing and improving environmental, me-
dicinal, and technological aspects of life. These are expressed
as quantitative structure-property relationships (QSPR) that
relate physical, chemical, or physicochemical properties of
compounds to their structures. Aside from the historically

important QSPR models, the need of keeping the present
review to a reasonable length limited our selection only to
models of sufficient statistical quality published recently.

A major goal of the QSPR studies is to find a mathematical
relationship between the property of interest and one or more
descriptive parameters (descriptors) derived from the struc-
ture of the molecule. The descriptors used in the study may
be empirical, i.e. experimental properties or properties
derived from readily available experimental characteristics
of the structure, or may be computed based on the structure.
Classical physical organic chemistry has long been concerned
with the correlation of chemical properties in terms of
structures. The pioneering work of Hammet1,2 and Taft3-6

on the development of linear free energy relationships
(LFERs) contributed considerable insight into organic reac-
tion mechanisms. In 1947, the first structural descriptors
(Wiener index and Platt number)7-9 were developed for the
correlations of thermochemical properties of paraffin hydro-
carbons; nevertheless, throughout the 1950s, most of the
correlation studies reported the use of empirical descriptors.
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Until the 1970s, most QSPR equations correlated spec-
troscopic, chromatographic, or other analytical properties of
compounds. More recently, the QSPR approach has expanded
to widely diverse areas of industrial and environmental
chemistry. Initially, empirical molecular descriptors were
obtained from experimental data for the development of
QSPR equations (for example, Hammett substituent con-
stants, σ; octanol/water partition coefficients, log P; Ostwald
solubility coefficients, log L). However, many empirical
descriptors reflect a complex combination of different
physical interactions and, in addition, are not available for
compounds yet to be synthesized.

Many efforts have been made to develop alternative
molecular descriptors which can be derived using only the
information encoded in the chemical structure. Much atten-
tion has been concentrated on “topological indices” and
molecular descriptors derived from the connectivity and

composition of a molecule which have made significant
contributions in QSPR studies.10-28 Nowadays, QSPR is used
to correlate many diverse physicochemical properties of
compounds with their molecular structures, through a wide
variety of descriptors. The basic strategy of QSPR is to find
an optimum quantitative relationship, which can be used for
the prediction of the properties of compounds, including
those unmeasured. QSPR studies became more prevalent
with the development of new software tools, which allowed
the understanding of how molecular structure influences
properties and, significantly, afforded composition of struc-
tures with desired properties as a reverse task. The develop-
ment of molecular descriptors based on structure is described
in detail elsewhere.29,30 QSPR has received significant
contributions from various research schools.31-37

1.2. Scope of the Review
In the past two decades, QSPR models have gained

extensive recognition in the correlation and prediction of
physical, chemical, analytical, and technological properties
of compounds. A major factor driving the widespread use
of QSPR models is their aid in rational determination of
properties of new compounds without the need to synthesize
and test them. With the advancement of software technology,
several computer programs have become available com-
mercially and academically which enable the rapid calcula-
tion of thousands of structural descriptors for a compound
in a fraction of a second. In order to process all these
molecular descriptors at the same time and to build optimal
structure-property models, multivariative statistical methods,
such as multiple linear regression (MLR), principal compo-
nent regression (PCR), and partial least-squares regression
(PLS), are often used. Although thousands of molecular
descriptors are already available for the QSPR modeling, the
search for the best descriptors suitable to model a property
is a major task. Experimentally determined values of many
fundamental properties are unavailable in the literature, and
their measurement is costly and time-consuming. Many
QSPR models have been developed for the prediction of a
wide range of properties, such as boiling and melting points,
molar heat capacities, heats of vaporization, densities,
aqueous solubilities, octanol-water partition coefficients, etc.
Many reviews (including several from our group) have
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appeared during the past decade on the QSPR applications
based on structural descriptors.22,36-46 The following are
illustrative of the contributions from many other groups: (i)
selection of molecular descriptors for quantitative structure-
activity relationships (QSAR);47 (ii) ANNs in molecular
structure-property studies;48 (iii) uniform-length molecular
descriptors, QSPRs, and QSAR: classification studies and
similarity searching.49-51

The present review summarizes recent QSPR research
methods and applications. The main focus is placed on QSPR
based on structural descriptors derived solely from chemical
structure for the correlation and prediction of various
physical, chemical, and physicochemical properties of
compounds.

1.3. QSPR Approach
The main objective of the QSPR methodology is to

quantify and relate determining factors for a particular
measured property with molecular features of a given system
of chemical compound(s). To achieve this purpose, one
usually employs a mathematical model (F) that connects
experimental property values with a set of features (molecular
descriptors) derived from the molecular structures (eq 1):

The descriptors in eq 1 are numerical values which
represent approximately the experimentally measured prop-
erty in a space defined by the nature of the chemical
compounds. Hence, the correct building of a model with
relevant and consistent descriptors could provide insights into
various underlying chemical, biological, or pharmacological
processes. Also, a reliable model should be able to perform
accurate prediction of the property values of other com-
pounds not used in deriving eq 1; this is the second major
goal of the QSPR methodology.

Building a QSPR model is an inductive process that
depends on the set of compounds with predetermined
properties. Therefore, there is no direct general model which
can be applied for any compound. In practice, the QSPR
methodology is applied in an indirect way that can be divided
into two main stages relating the chemical compounds with
their properties via structural descriptors and mathematical
relations, i.e. (i) representation of the chemical objects and
(ii) mathematical/statistical treatment. Figure 1 shows sche-

matically the indirect approach to the QSPR problem. The
representation is the process of applying the fundamental
principles of chemical knowledge (molecular mechanics,
quantum chemistry, etc) on the chemical compounds repre-
sented by their molecular structures. The connecting chain
between (i) and (ii) comprises the structural molecular
descriptors obtained on the basis of the representation and
is regarded as part of (i). The mathematical treatment
involves development of mathematical equations by taking
into account both the molecular descriptors and the property
in order to quantify their relationship.

2. Data Input for QSPR Modeling

2.1. Data Set Selection
The key step in developing comprehensive QSPR models

“is the selection of an informative and representative data
set”, i.e. training set data.52-56 QSPR models are only valid
within their respective domains, being determined by the
parameters associated with the chemicals in the training set,
i.e., those chemicals used to develop QSPR models.

The input data preparation is a part of the representation
stage (see Figure 1), and as such it is related to (i) the
selection of the desired compounds used as objects to develop
QSPRs and (ii) their predetermined (experimental) properties.
The two points are up to the researcher and the task to be
solved. The former point is connected with the chemical
space of the compounds that the desired model would take
into account. Mathematically, the chemical space for a given
composition of matter can be defined as a set of all
connection tables based on the molecular formula.57 Clearly,
the more atoms in the formula, the larger the number of
possible variations of different compounds present in the
parent formula. In practice, this leads to the existence of two
classes of chemical sets, namely, homogeneous and diverse
compound sets. Usually, the QSPRs developed on homoge-
neous data lead to better models compared to models
developed on diverse sets. However, the applicability
(predictions, analysis) of the models on homogeneous data
sets is limited to compounds similar to those used to build
the model.

Experimentally measured properties are either extracted
from chemical databases or collected from the literature. The
essential criteria for a satisfactory QSPR model are the

Figure 1. Flow chart of a QSPR problem.

property ) F(molecular descriptors) (1)
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availability of a set of experimental property data (i) of
sufficient size and diversity and (ii) measured under the same
(or similar) conditions with satisfactory reproducibility and
accuracy. Several commercial databases of chemical com-
pounds have been developed, but few of them are publicly
available on the Web.58 It is advisible to analyze the data
set prior to building the QSPR models in order to confirm
the basic requirements of the mathematical methods to be
used to develop the quantitative relationship.

The reliability of the experimental property chosen for
QSPR modeling is an important issue, since it determines
the stability and predictability of the models. If the experi-
mental errors are large, then building precise and reliable
models is meaningless. In addition, many QSPR models are
based on MLR techniques where normal distribution of the
experimental property values is of vital importance for
assessment of the model predictability and reliability. The
closer the distribution function shape of the experimental
data to normal, the more significant (accurate) are the
statistical parameters assessing the models.59 However, there
are mathematico-statistical techniques that do not require
normal distribution of the experimental data.60

If the original property values deviate greatly from the
normal distribution, a transformation is desirable. The
transformation functions frequently used are log(Prop), log(1/
Prop), 1/Prop, and 1/(Prop)2. Certain alternative transforma-
tions such as sine, tangent, or hyperbolic functions have been
heavily criticized in the literature.61

Several empirically established criteria62,63 concerning the
data set selection are summarized below.

(i) Size of the data set: at least 25-30 compounds
(frequently congeners) characterized by common structural
features. Large and highly heterogeneous data sets are,
however, typical for QSPR modeling of physicochemical
properties.

(ii) Range of the property values: the property values
should cover a range of at least 1 logarithmic unit.

(iii) Experimental error: the reliability of QSPR models
decreases rapidly if the relative experimental error is higher
than 15%.

(iv) The optimal ratio between the training and the test
data sets should lie within the boundaries of 2:1 to 4:1.

2.2. Geometry Optimization
An important step in a QSPR study is the definition of

the molecular structure. The (minimum) information required
to specify a given molecule is its atomic composition and
the manner in which those atoms are connected. The latter
point requires the relative positions of all the atoms in space.
Thus, the geometry optimization finds the coordinates of a
molecular structure that represents a potential energy mini-
mum (PEM). The stability of a compound is determined by
its PEM and is usually related to the compounds that are
the basic units of the pure substance. However, in reality,
the calculations typically deal with equilibrium mixtures at
nonzero temperatures. In this case, the measured properties
reflect thermal averaging, possibly over multiple discrete
conformers, stereoisomers, tautomers, etc. that are structurally
different than the isolated compounds, and care is needed in
making comparisons between theory and experiment.59

Obtaining the correct molecular structure is important for
satisfactory descriptor calculations. Several geometry opti-
mization methods are commonly used.64,65 Such optimization
methods combined with conformational search techniques

lead to the PEM. The conformational search can be per-
formed in a systematic or random manner with respect to
small rotatable angles defining the step of each cycle. If many
single bonds are present and/or the chosen rotational angle
is small, the number of the conformers generated can be
exceedingly large. In complex cases, it is desirable to have
random sampling of the conformational space. As a result,
a set of different conformers will be generated. The
completeness of the set of conformations produced can be
increased by augmenting the random searching cycles.66

The next stage requires full geometry optimization of the
compounds studied. Recent progress in computational hard-
ware and the development of efficient algorithms has assisted
the routine development of molecular quantum mechanical
calculations. The semiempirical methods supply realistic
quantum chemical molecular quantities in a relatively short
computational time frame. Quantum chemical calculations
are thus an attractive source of new molecular descriptors,
which can, in principle, express all of the electronic and
geometric properties of molecules and their interactions.
Indeed, many recent QSPR studies have employed quantum
chemical descriptors alone or in combination with conven-
tional descriptors.

In practice, the preparation of the molecules in computer
format usually goes through drawing the molecular structure.
There are many commercial and noncommercial programs
having modules for two-dimensional (2D) drawingsSymyx
Draw [www.symyx.com] (formerly ISIS Draw), Chem Draw
[www.cambridgesoft.com], and Hyperchem [www.hyper.
com]sor the drawing can be extracted from a chemical
database in a certain file format. Three-dimensional (3D)
structures are then generated using molecular mechanics
(MM+), quantum chemical methods, e.g. semiemprical AM1
(Austin Model 1) included in the MOPAC (MOlecular
PACage) package, ab initio, etc.

2.3. Descriptor Calculation
Once the molecular structures are entered and the proper

geometries are established, the next stage in the QSPR
modeling is the generation of the descriptors. The molecular
descriptors are precise mathematical values describing the
physical and chemical properties of the molecules. Empirical
indices (such as substituent constants and various electrone-
gativity-related parameters) were most frequently used in
early QSPR studies. Among them, electronegativity has
remained a very popular and broadly employed descriptor.67-73

Substituent constants, however, are often disregarded by
modern QSPR. With the increase of the computational
power, quantum chemical, electronic, geometrical, consti-
tutional, and topological descriptors are increasingly pre-
ferred. Quantum chemical, electronic, and geometrical
descriptors (derived from empirical schemes or molecular
orbital calculations) encode the molecule’s ability to par-
ticipate in polar or hydrogen bonding (donor, acceptor)
interactions. The constitutional descriptors represent the
chemical composition of a molecule and are independent of
molecular connectivity and geometry. Examples of such
descriptors are the numbers of particular atoms or bond types,
numbers of particular ring systems, molecular weight, etc.
They are fragment additive and reflect mostly the general
properties of compounds related to their composition.
Topological descriptors are calculated using data on the
connectivity of atoms within a molecule. Consequently, these
descriptors contain information about the constitution, size,
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shape, and branching, whereas bond length, bond angles, and
torsion angles are neglected. Some of the most popular
software packages capable of calculating an extensive list
of descriptors include CODESSA PRO,74 POLLY,75

ADAPT,76 OASIS,77 Dragon,78 Chem-X,79 Tsar,80 QSAR-
Model,81 and others.

However, due to mathematical and computational com-
plexities, this seems unlikely to be realized in the foreseeable
future. Thus, researchers need to rely on methods which,
although approximate, have now become routine and have
been demonstrated to provide results of real utility. Solving
the Schrodinger equation for a moderate many-body particle
system leads to a large number of quantities (both observable
and nonobservable). For example, in the Hartree-Fock
approximation (which is usually encoded in the semiempiri-
cal quantum-chemical methods; see below), the solution for
the total (ground) energy of the system is obtained by
averaging the Fock Hamiltonians. Several other parameters,
including single electron energies, charges, potentials, etc.,
are also obtained. These variables can then be used to
calculate diverse molecular descriptors, especially quantum-
chemical descriptors. Therefore, the descriptors are direct
outcomes from the theory and can include multiple quantum-
chemical quantities in their definitions.

While the ab initio model Hamiltonian provides a complete
representation of all nonrelativistic interactions between the
nuclei and electrons in a molecule, available solutions of
the respective Schrödinger equations are necessarily ap-
proximate and the computational time is proportional to a
high exponential (N4, N5) of the number of electrons in the
molecule, N; thus, practical ab initio calculations are still
severely limited by the types of atoms and size of mol-
ecules.82 However, even within these limits, molecules may
be described by ab initio methods with some degree of
reliability after a search of the potential energy surface(s)
has been carried out at a lower level of theory. Most ab initio
calculations have been based on the orbital approximation
(Hartree-Fock method). In general, this method provides
better results the larger the basis set (i.e., the number of
atomic orbitals) employed, although, according to the
variational principle, this is strictly valid only for the total
electron energy of the molecule.

A wide variety of ab intio methods beyond Hartree-Fock
have been developed and coded to account for the electron
correlations in the molecule. These include configuration
interactions (CI),83,84 multiconfigurational self-consistent field
(MC SCF),85 correlated pair many-electron theory (CP-
MET),86 including its various coupled-cluster approximations,
and perturbation theory (e.g., Møller-Plesset perturbation
theory of various orders, MP2, MP3, MP4).87,88 Most of these
methods are extremely time-consuming and require large
memory and fast CPUs. Therefore, they are impractical for
the calculation of extended sets of relatively large molecules
(i.e., more than 10 atoms).

As an alternative to ab initio methods, semiempirical
quantum-chemical methods can be used for the calculation
of molecular descriptors. These methods have been devel-
oped within the mathematical framework of the molecular
orbital theory (SCF MO) but based on simplifications and
approximations introduced into the computational procedure
which dramatically reduce the computational time. Experi-
mental data on atoms and prototype molecular systems have
often been used to estimate the values of the parameters in
these methods; therefore, they are widely known as semiem-

pirical methods.89 Different parametrizations, such as MNDO,
AM1, or PM3, supply realistic quantum-chemical molecular
quantities in a relatively short computational time. Thus, they
are an attractive source of molecular descriptors, which can,
in principle, express all of the electronic and geometric
properties of molecules and their interactions. These semiem-
pirical methods, however, are based on limited experimental
parameters and in some practical cases fail to produce good
results. Therefore, they are the subject of continual improve-
ment.90

The methods used for analyzing the electron density
(charge partitioning schemes) of molecular systems can be
divided into three groups: (i) wave function based methods
(Mulliken population analysis, natural population analysis);
(ii) molecular electrostatic potential fitting based methods
(such as the CHELPG and Merz-Singh-Kollman (MK)
scheme), and (iii) electron density based methods (such as
AIM). Due to the fundamental problem of deciding where
atoms in a molecule actually start and where they end, no
precise atomic charge can be defined. Nevertheless, the
calculation of atomic charges can still be quite helpful, if
only for use as an effective parameter in force field
calculations or QSPR analysis of closely related (similar)
systems.

Molecular modeling techniques enable the definition of a
large number of molecular and local quantities characterizing
the reactivity, shape, and binding properties of a complete
molecule as well as of molecular fragments and substituents.
Because of the large, well-defined physical information
content encoded in many theoretical descriptors, their use
in the design of the training set in a QSPR study presents
two main advantages: (i) the compounds and their various
fragments and substituents can be directly characterized on
the basis of their molecular structure only, and (ii) the
proposed mechanism of action can be directly accounted for
in terms of the chemical reactivity of the compounds under
study. Consequently, the derived QSPR models will include
information regarding the nature of the intermolecular forces
involved in determining the chemical, physical, or other
property of the compounds in question.

3. Modeling Procedures
Most QSPR treatments utilize a program to calculate

descriptors and then try to select a small number of
significant descriptors in a purely empirical fashion to form
an equation. The descriptors are calculated for a “training
set” of compounds for which a property of interest has been
measured. QSPR methodology has been aided by new
software tools, which allow chemists to elucidate and to
understand how molecular structure influences properties.
Most importantly, this helps researchers to predict and
prepare structures with optimum properties. Therefore, the
software is also of great assistance for chemical and physical
interpretation.

In the past ten years, our groups at the University of
Florida and at Tartu/Tallinn in Estonia have developed
multipurpose statistical analysis software in the form of the
CODESSA (COmprehensive Descriptors for Structure and
Statistical Analysis) program, later updated as the CODESSA
PRO program.74 The software includes robust multilinear
regression (best multilinear and heuristic) algorithms which
feature extraction, principal component regression (PCR),
and partial least-squares (PLS) regression. In addition, it is
being further updated with ANN, fragment molecular
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features, and genetic algorithms (GA) so that it can meet
state-of-the-art methods for powerful QSPR modeling.
CODESSA PRO also provides user-friendly tools for ma-
nipulation and extraction of the calculated descriptors for
predefined data sets, which can be further treated by external
software products such as Systat,91 Statistica,92 JMP,93 etc.

3.1. Multivariate ApproachessLinear Aspect
3.1.1. Multilinear Regression

Multilinear regression (MLR) is a very widely used
approach in QSPR. The simple linear regression model
assumes that the response variable y is a straight-line function
of a single explanatory variable x. Multiple linear regression
is an extension of simple linear regression including more
than one dependent variable. As with simple linear regres-
sion, the regression coefficients in MLR for each independent
variable are determined so that the sum of the squares of
the errors is minimized. Thus, the general multilinear
equation can be written in the following form as in eq 2:

where y is the response (or the dependent variable), x1,
x2, ..., and xp represent the explanatory (or independent)
variables, b1, b2, ..., and bp are the regression coefficients,
and b0 is the intercept.

A common method of handling a large number of x
variables is to use a stepwise regression routine aimed to
identify the “best” set of x variables, i.e., the set which
explains the greater part of the data variance. This method
adds, deletes, or both adds and deletes x variables (one at a
time) to arrive at the “best” regression equation. At each
step, the decision to add or exclude/skip an x variable is based
on a test of whether that variable contributes significantly
to the model. In the simplest implementation, an arbitrary
point to cut off further variables from entering the equation
“the p value” (level of significance) is used.

The squared correlation coefficients, R2, squared cross-
validated correlation coefficients, R2

CV, Fisher criterion value,
F, and standard deviation, s, all give information about the
“goodness” of the model.

Usually a QSPR study deals with a large number of
molecular descriptors. The search for the best MLR model
in such a large descriptor space is not a trivial task. Various
regression techniques coupled with variables selection pro-
cedures have been proposed for the selection of the “best
set” of regression predictors, such as backward elimination,
forward selection, and ridge regression.94-97

The best multilinear regression (BMLR) method imple-
mented in CODESSA PRO is able to find the “best”
regression in a short computational time in a descriptor space
of hundreds of variables. The criteria are managed in a way
that a certain chemical space can be explored more precisely
for the best correlations. The BMLR method is based on
the (i) selection of the orthogonal descriptor pairs and (ii)
extension of the correlation (saved on the previous step),
with the addition of new descriptors improving the statistical
parameters of the model. A cutoff value determining the
improvement of R2 is used to limit the number of descriptors
entering the equation. However, the number of descriptors
in the equation should not exceed certain limits because it
could lead to an overfitted model.94 The problem of over-

fitting may be overcome by exploring the improvement of
R2 and Rcv

2 as a function of the number of descriptors in the
model.

3.1.2. Principal Component Regression/Analysis and
Partial Least Squares Analysis

Multiple linear regression suffers from several shortcom-
ings:98 (i) failure for highly intercorrelated data (i.e., descrip-
tors); (ii) assumption that the data have no noise; (iii) ability
to model only one y variable at a time; and (iv) requiring
more observations than variables.

Principal component regression (combining PCA and
MLR) and partial least-squares (PLS) are alternative methods
that can be applied to address all of the issues i-iv.99-101

PCA reduces statistically the dimensionality of the data while
retaining most of the variation in the data set. This reduction
is performed by identifying the directions (called principal
components) along which the variation in the data is
maximal. Theoretically, the number of components extracted
in PCA is equal to the number of the observed variables.
However, in most cases, the first few components alone
already account for the majority of the variance, so only these
first few components are retained, interpreted, and used.

The PCA components possess two very important char-
acteristics: (i) each component accounts for the maximal
amount of variance in the observed variables that was not
accounted for by the preceding components, and (ii) no
component is correlated with any preceding component.

The partial least-squares (PLS) method is constructed from
the concept of PCA. Just as with PCA, in PLS the data
analysis is simplified by projecting the data into a low
dimensional “latent variable” space (the acronym PLS has
also been taken to mean “projection to latent structure”).
Components in PLS are constructed to maximize the cova-
riance between the dependent variable y and the original
independent variables x. However, (unlike PCA) PLS
analysis also simultaneously calculates the latent variables
for the two matricessthe matrix of independent (x) and the
matrix of dependent (y) variables, together with the relation-
ship between them. Thus, for PLS the new set of “latent
variables” is a set of conjugant gradient vectors to the
correlation matrix rather than a set of successive orthogonal
directions that explain the largest variance in the data as in
PCA.102 The methodology and applications of PCA are
described elsewhere.103

3.1.3. Chance Correlations

A QSPR model usually contains a small number of
independent descriptors out of many evaluated. The descrip-
tors selected for inclusion in such an equation are chosen so
that the overall equation is highly significant by standard
statistical criteria. However, these criteria relate to the
individual variables in the final equation and do not take
into account the number of descriptors actually screened for
possible inclusion in the equation. When the number of
possible independent variables considered becomes very
large, it may become possible that a correlation will occur
purely by chance. Because this factor is not reflected in
the standard statistical criteria, it is important to consider
the number of variables screened for possible inclusion in
the equation.

Recently, various sets of published multiparameter QSPR
models have been analyzed, in particular with attention to

y ) b0 + b1x1 + b2x2 + ... + bpxp (2)
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the possibility of “chance correlations” occurring in the
published models.104,105 However, we have demonstrated that
the possibility of chance correlations can be minimized so
as to be negligible by using appropriate procedures.106 Most
importantly, the collinearity of natural descriptor scales needs
to be strictly controlled during the forward selection process-
ing. Satisfactorily, the criteria used in the BMLR procedure
have been proven to be sufficient for the elimination of
chance correlations due to the nonorthogonality of the scales.
A sufficiently large number of data points in the set give
additional assurance for avoiding chance correlations. While
tests with randomly generated scales might have possible
significance, in such cases, the size of the space generated
by these random scales must be compatible with the size of
the actual descriptor space.

3.2. Multivariate ApproachessNonlinear
Approaches

The above-described chemometrics methods, MLR, PLS
regression, and PCR, are widely used in the QSPR area. In
principle, they give a multilinear expression of the property
under study in a given descriptor (or principal component)
space. However, nonlinear approaches, such as artificial
neural networks (ANN) or support vector machines (SVM),
can also be employed to derive flexible correlation models
between the molecular structures and properties. They are
able to “catch” hidden nonlinearities between the property
and the descriptors which make them in most cases better
predictors than the MLR models. However, these nonlinear
methods are not as intuitively easy to interpret as the MLR
models. Although nonlinear models are very useful, the real
world is rarely “linear” and most QSAR/QSPR relationships
are nonlinear in nature. Once a nonlinear relation has been
found and validated, it can be a good predictor and indicator,
such as, for instance, the famous J-shaped dose response
dependence.107

3.2.1. Artificial Neural Networks

Artificial neural networks (ANN) have been applied in
many diverse scientific endeavors, ranging from economics,
engineering, physics, and chemistry to medical science.108

These computational methods evolved from attempts to
understand and emulate the brain’s information processing
capability. The brain consists of multimodal neural networks
that extract and recombine relevant information received
from their environments and render the brain capable of
making decisions that satisfy the needs of the organism.
These capabilities of the brain can be emulated with ANNs,
which can conceive complex nonlinear input-output trans-
formations. Their nonlinear feature extraction capability
suggests their potential usefulness in QSPR.103,109-111 There
are numerous types of ANN, such as multilayer perception

(MPL), Kohonen, probabilistic, radial basis, and entropy
machines networks that differ by their ideology, topology,
and optimization algorithms.112

ANNs are typically used when a large number of observa-
tions are available and a nonlinear relationship is expected
or when the problem is not understood well enough to apply
other methods. The “architecture” of the ANN consists of a
number of “neurons” that receive data from the outside,
process the data using transformation functions, and produce
a signal. The “neurons” actually act as nonlinear transforma-
tion functions. When more than one of these neurons is used,
nonlinear models can be fitted. These networks have been
applied to the modeling of numerous problems, including
QSPR. Neural networks are known for their ability to model
a wide set of functions without knowing the model a priori.
The back-propagation network receives input signals which
are then multiplied by each neuron’s weights (Figure 2). For
each neuron these products are summed and a nonlinear
transfer/activation function is applied. The role of the bias
is to shift the transfer function to the left or right. The
resultant sums from the previous step are then multiplied
by the output weights, transformed, and interpreted. Since a
back-propagation network is a supervised method, the desired
output must be known for each input vector. The difference
between the desired output and the network’s predicted
output defines the ANN model error, which needs to be
minimized. This error is then propagated backward through
the network, adjusting the weights, so that, on the next cycle,
the generated predictions will come closer to the desired
output.

Four important factors must be considered when using
neural networks:

(i) The design of the network is critical with respect to
the number of hidden units involvedsif too many hidden
units are used, the network would overfit or “memorize” the
data. Conversely, if too few hidden units are used, the
network will fail to generalize and will become unstable.

(ii) The length of the training time must always be
consideredsif excessive training periods are used, the
network might become overtrained and, thus, destabilized.

(iii) Appropriate test and training sets must be defined. The
training set should adequately represent the entire data set
and be sufficiently large in order to properly train the neural
network.

(iv) The results obtained from ANNs can be difficult to
interpret, particularly in application to drug design. The
standard approach for interpretation is the analysis of the
weight magnitudes.

In recent years, the literature concerning ANNs as applied
to QSPR has grown dramatically, suggesting that the
importance of applications of ANN in molecular modeling
is a major driving force. Among numerous studies using
ANN in QSPR, major contributions are due to the groups
of Jurs,103,113 Zupan and Gasteiger,114 Zefirov,111 and our
group (Katritzky and Karelson).115-117 The ANN models have
frequently been shown to possess better predictive charac-
teristics compared to the models using standard multilinear
regressions. The flexibility of the ANN also exhibits a better
ability to represent predictive models.

3.2.2. Genetic Algorithms

The genetic function approximation algorithm was orig-
inally conceived by taking inspiration from two seemingly
disparate algorithms: Holland’s genetic algorithm (GA) andFigure 2. Typical ANN topology.
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Friedman’s multivariate adaptive regression splines (MARS)
algorithm.118,119 Today, this technique is widely used in the
QSPR area as a tool for modeling of complex properties as
well as for selecting meaningful variables for ANN.120,121

The genetic function approximation (GFA) algorithm is
an alternative to standard regression analysis for constructing
QSPR equations. The application of GFA leads to multiple
models generated by evolving random initial models using
a GA. Each cycle performs a crossover operation to
recombine terms of better scoring models, thus improving
the parameters of the model. The method is efficient for
generating QSPR equations from a large number of descriptors.

GFA works well only for preselected smaller subsets of
descriptors; otherwise, it might be trapped in local optima,
and thus, an important descriptor or combination of descrip-
tors could be lost during the crossover process. One of the
main pitfalls of the method is that once an important
descriptor is dropped during the crossover process, it can
never be recovered.122

3.2.3. Support Vector Machines (SVMs)

An elegant alternative to the ANN approach was developed
to avoid the existence of many local minima and the
uncertainty about the number of neurons needed for a given
task.123 The so-called “support vector machine” methods are
designed around the computation of an optimal separating
hyperplane which provides the minimum expected gener-
alization error in a multidimensional space called “future
space”.124

In this m-dimensional space, each compound is represented
by a point which may be thought of as a vector of m numbers
(descriptors). The support vector machine can actually locate
the hyperplane without ever representing the future space
explicitly, simply by defining a function, called a kernel
function.

The main advantages of SVM are as follows: (i) stable,
reproducible results are produced, independent of the opti-
mization algorithm; (ii) the optimum solution (global minima)
is guaranteed; (iii) a few parameters need to be adjustedsthe
regularization parameter (C) and the nature and the param-
eters of the kernel function.

Despite huge advantages over ANNs, SVMs have two
major drawbacks in that they are even slower than ANNs
and provide only “black-box” solutions.

3.3. Expert Systems
Expert systems were originally introduced by Edward

Feigenbaum and were the first truly successful form of
artificial intelligence software. Expert systems seek to provide
an answer to a problem or clarify uncertainties without the
need of consultation of human experts. All expert systems
so far designed provide answers only in a specific narrow
problem domain, but with the increase of the computational
power, it is expected that in the near future more general
systems will appear.

The most common methods to simulate the performance
of a human expert are (i) the creation of a so-called
“knowledge base” which uses the knowledge representation
formalism to capture the subject matter expert’s (SME)
knowledge and (ii) a process of gathering that knowledge
from the SME and codifying it according to the formalism,
which is called knowledge engineering. It is not necessary
for an expert system to have a learning component. However,

its efficacy can be proven by placing it in the same real world
problem solving situation as human experts, typically as an
aid to human workers or as a supplement to an information
system.125-127

Some of the distinctive characteristics of an expert system
are as follows:

(i) it contains dynamically synthesized step sequences
needed to reach a conclusion for each new case, which were
not explicitly programmed when the system was built;

(ii) it allows processing of multiple values for any problem
parameter and, thus, permits more than one line of reasoning
to be followed and the results of incomplete (not fully
determined) reasoning to be presented;

(iii) problem solving is achieved by applying specific
knowledge rather than a specific technique. This character-
istic reflects the belief that human experts do not process
their knowledge differently from others, but they do possess
different knowledge.

Compared to human operators, expert systems possess
several advantages: (i) they always ask questions that a
human might forget to ask; (ii) they maintain hold and
maintain significant levels of information, unifying the
knowledge of many human experts; (iii) they can work
uninterruptedly; and (iv) they can assist more than one person
at a time. The disadvantages of expert systems include the
following: (i) lack of the common sense needed in some
decision making; (ii) inability to respond creatively in
unusual circumstances; (iii) errors in the knowledge base may
lead to wrong decisions; and (iv) inadaptive to changing
environments, unless the knowledge base is changed.

Most expert systems with applications in chemistry and
biochemistry are designed to solve complex problems and
predict properties such as toxicity, bioactivity, drug efficacy,
etc. However, in some cases these systems are also able to
predict widely used physicochemical parameters, such as pKa,
log P, retention times, etc. A few examples of expert systems
providing solutions to QSPR problems are given below.

The CRIPES (chromatographic retention index prediction
expert system) expert system was developed to predict the
retention time properties of organic molecules in reversed-
phase HPLC using indices based on an alkyl-aryl-ketone
scale derived from empirical quadratic expressions.128

The SOL expert system129 estimates the quality of experi-
mental aqueous solubility data and is also able to screen out
reported erratic values, such as the 1.29 × 10-8 and 6.34 ×
10-8 values for the solubility of PCB 101.

The CAMEO (computer assisted mechanistic evaluation
of organic reactions) is a modular expert system that predicts
the outcome of organic reactions given starting materials,
reagents, and reaction conditions.130 This expert system is
also able to predict the pKa values of a wide range of organic
compounds using a fragment based approach with an error
not exceeding 2 pKa units.131

SPARC (spark performs automated reasoning in chemis-
try) is an expert system for the estimation of chemical and
physical reactivity.132 In general, SPARC utilizes linear free
energy theory (LFET) to compute thermodynamic properties
and perturbed molecular orbital (PMO) theory to describe
quantum effects such as delocalization energies or polariz-
abilities of icelectrons. Some of the properties which can be
predicted are as follows: (i) equilibrium constants for
complex speciation (ionization and tautomerization) and
interphase distribution (gas/liquid, liquid/liquid, solubilities)
and (ii) rate constants for reactivity (solvolysis and redox).

5722 Chemical Reviews, 2010, Vol. 110, No. 10 Katritzky et al.



SPARC is especially accurate when predicting the pKa values
at 25 °C (R2 ) 0.994 and RMSE ) 0.37).

The HPLC-METABOLEXPERT expert system developed
by Valko et al.133 predicts the retention indices of metabolites.
For this purpose, the system requires retention data and the
octanol-water partition coefficient for the parent drug
molecule. The log P is calculated according to the Rekker
fragment system and by determining the contribution of the
structural differences between the parent compound and the
metabolite to the octanol-water partition coefficient, and
then relating this contribution to reversed-phase retention
data, the retention data of a metabolite can be predicted.

Szepesi and Valko134 also developed the EluEx expert
system, which can calculate the log P values on the basis of
the structure of the compounds. Equations and pass-fail
criteria (the capacity factors and asymmetry factors should
fall within certain limits) are used to predict the final mobile-
phase composition. According to the authors, the system may
fail for some compounds, such as quaternary ammonium salts
and very lipophilic compounds.

3.4. Model Selection
In a QSPR study, one usually develops several equations,

among which the best should be chosen. The following
general steps are used for the selection of an equation:

(i) Outlier identification: an outlier is an atypical value not
belonging to the distribution of the rest of the values in the
data set. Data points with deviations at least twice greater
than the standard deviation of the data are usually considered
outliers. This definition is correct only when the distribution
is unimodal and symmetrical (most cases). For skewed data,
the median is a better indicator of the central location than
the mean. In such cases, observations lying more than 1.5
interquartile distances away from the closest quartile can be
considered outliers. Extreme outliers are those which lie in
more than 3 interquartile distances from the closest quartile.
Outliers that cause a poor fit degrade the predictive value of
the model; however, this has to be balanced with loss of
generalizability if they are removed. Among all possible
equations generated, those characterized with few and/or
explainable outliers should be selected as reliable and
potentially useful. In the case of univariate statistics, the
outliers may be identified before fitting a model, but
multivariate outliers, if present, can be identified only when
the model of the best fit is obtained. Multivariate outliers
having (i) high leverage and low discrepancy do not affect
the regression line but tend to increase R2 and reduce the
standard error; (ii) low leverage and high discrepancy tend
to influence the intercept but not the slope of the regression
or R2, while usually inflating the standard error; and (iii) both
a high leverage and a high discrepancy influence the slope,
the intercept, and the R2 value. Parameters such as Mahal-
anobis distances,135 leverages, Q2 residuals, T-Hotelling,136

etc. are commonly utilized for multivariate outlier identifi-
cation.

(ii) The 5:1 rule of thumb: given enough parameters any
data set can be fitted to a regression line. As a consequence,
regression analysis generally requires significantly more data
points than parameters. A useful rule of thumb is that the
ratio between the objects and the variables should be at least
five to one for the MLR analysissotherwise there is a high
risk of “by chance” correlation.137

(iii) Principle of parsimony (Occam’s Razor): the principle
postulated by William of Occam states that, among a set of

equally good explanations for a given phenomenon, the
simplest one is the most probable. It is called Occam’s razor
because he was “trimming down” his explanations to the
bare minimum. In QSPR modeling, the principle of parsi-
mony means that (a) models should have as few parameters
as possible, (b) models should be pared down until they are
minimally adequate, and (c) simple explanations are better
alternatives than those more complex.

The process of model simplification is an integral part of
hypothesis testing. In general, a variable is retained in the
model only if its removal causes a significant decrease of
the statistical parameters compared to those of the current
model. However, when simplifying the model, one should
be careful not to lose the essential parts. This situation is
reflected in Einstein’s clever addition to the Occam’s razor:
“A model should be as simple as possible. But no simpler.”

3.5. Model Validation
Validation of the models developed is an important aspect

of any QSPR study. Once a model is obtained, it is important
to determine its reliability and statistical significance. Several
procedures are available to assist in this. These can be used
to check whether the number of parameters is appropriate
for the data available, as well as to provide some estimate
of how well the model can predict the property for new
molecules. In order to be reliable and predictive, QSPR
models should (1) be statistically significant and robust, (2)
be validated by making accurate predictions for external data
sets not used in the model development, and (3) have a
defined domain of application. There are various ways to
express the performance of regression models which are
widely used in QSAR. The most common parameters are
the “explained variance” for the response variable y, denoted
R2, and the residual standard deviation (RSD, s2). The term
R2 is often referred to as “model fitness” and should
preferably be as close to unity as possible, while the RSD
should be kept small. For judging a model’s predictive power,
meaning how well it performs in forecasting, techniques such
as cross-validation, bootsrapping, external validations, and
permutations of the data (scrambles) are often used. The most
widely used validation procedures can be classified as
follows.

3.5.1. Internal Validation

The idea behind the internal validation is to predict the
property value for a compound or a group of compounds
using the regression equation calculated from the data for
all remaining compounds of the QSPR model. Variations of
this technique are leave-one-out (LOO) and leave-many-out
(LMO).52 In evaluating the prediction ability of regression
models, the criterion most used is the leave-one-out cross-
validated Rloo

2 (Q2,q2), defined as follows:

In eq A, y, y′, and y′′ are the measured, predicted, and
averaged (over the training set) values of the property. From
a practical point of view, it is considered that if Q2 is greater
than 0.5, it is an indicator for the high predictivity power of
the model. However, it has often been claimed that the use
of only this criterion is often too optimistic for model
validation,53 because models so validated in some cases turn
out to be not predictive if more severe validation is applied.

q2 ) 1 - ∑ (y - y′)2/ ∑ (y - y′′ )2 (A)

Quantitative Correlations of Physical and Chemical Properties Chemical Reviews, 2010, Vol. 110, No. 10 5723



On analyzing such models, chance correlations, noisy
variables, and too predictor collinearity are frequently the
cause of their lack of predictivity.

In a typical LMO (in this case, leave-1/3-out) validation,138

the parent data points are sorted in order of their property
values and divided into three subsets (A, B, C) as follows:
the first, fourth, seventh, etc. data points comprise the first
subset (A); the second, fifth, eighth, etc. comprise the
second subset (B); and the third, sixth, ninth, etc. comprise
the third subset (C). Three training sets are then prepared as
combinations of two subsets (A and B), (A and C), and (B
and C). For each training set, a correlation equation is derived
using the complete descriptor pool. The equations obtained
are then used to predict property values for the compounds
of the remaining sets (A, B, or C, respectively). The
efficiency of the QSPR models to predict property values is
assessed by the squared correlation coefficients (R2) and
standard deviations (s) between experimental and predicted
data for each test set (A, B, or C). The descriptors found
“effective” for each of the submodels are further used to
form a reduced descriptor space from which the final model
for the whole set (A + B + C) will be constructed.

The possibility of so-called chance correlations is an
important issue related to the validation of the QSAR models.
Typically, a pool of independent variables (descriptors) of
possible relevance to important physicochemical parameters
relating to the series of compounds under discussion is
evaluated by multiple-regression analysis for correlation with
the activity values. The correlation equations emerging from
such an analysis generally contain a small number of
independent descriptors from the large pool evaluated. The
descriptors selected for inclusion in such equations are chosen
so that the overall relationships are highly significant by
standard statistical criteria. However, these criteria relate to
the individual variables in the final equation and do not take
into account the number of descriptors actually screened for
possible inclusion in the equation. Clearly, the larger the
number of possible independent variables considered, the
greater the possibility that a correlation will occur purely
by chance. There are very useful criteria and analyses in the
literature for tackling this drawback of the models. We now
refer the reader to the most useful works on this topic.54-56,106

In addition, randomization tests can be used in conjunction
with the LMO or LOO. These tests consist of repeated
elaboration and random shuffling of the data for which the
model equations are tested. Due to a factorial increase in
time of permutations, the Monte Carlo method is often used
for producing a randomization test.139,140

Another useful technique for the validation of QSAR
models is so-called bootstrap. The main idea of this method
is that many new data sets called bootstrap samples are
created from the original data set by random replacements.
By performing such resampling many times, a good estimate
can be obtained of the distribution of the statistics of interest.
Hence, the distributions can be seen as approximations to
the true distributions of the estimators, and, thus, statistics
of interest such as bias, standard deviation, and confidence
intervals can be derived from them in the usual manner.141

3.5.2. External Validation

One of the most widely used methods of correlation testing
involves the use of an external validation set. This so-called
“test set” should be sufficiently large to give a reasonable
estimation of the model quality, especially when a random

selection was used for its construction. However, a large test
set can be constructed only when the initial data set itself is
largesin all other cases, a small-sized validation test set
would be useless because the final result will be a random
estimate and would not reflect the “true” predictive power
of the model.142 Thus, for small-sized data sets, the splitt-
ing of the data is not a suitable solution, since the size
decrease of the “training set” may itself lead to poorly
constructed models. In such cases, we recommend an
extensive use of internal validation procedures as described
in section 3.5.1.

The purpose of the external validation is to evaluate how
well the equation generalizes the data. The difference
between the test statistics of the training and external
validation data sets is a measure of the reliability of the
correlation. A valid model with high generalization ability
has R2 and s for the validation set similar to those of the
model. The predictive power of the QSPR models is often
quantified in terms the root-mean-square error (RMSE),
residual standard deviation (RSD), or predictive squared
correlation coefficient Q2.142

3.6. Model Interpretation
Another important aspect of the QSPR modeling is the

extraction of the structure-property relationship information
encoded in the model. The development of a (multi)linear
model involves selecting one or more descriptors that provide
a statistical correlation with the experimental property values.
A preconceived notion of the physicochemical interpretation
of the descriptors involved could result in misinterpretation
of the underlying structure-activity relationship. There are
two important pieces of information one needs in order to
generate a meaningful QSPR model: (i) the knowledge of
what features of the structure are measured by a given
descriptor and (ii) the knowledge of how structural changes
influence the experimentally observed property. In the case
of whole-molecule descriptors, e.g. molecular connectivity
indices, the changes in structure measured by the descriptor
may be occurring in several places. However, the important
structural changes which affect the observed property may
be localized at a particular position in the molecule.

It is well-known that a statistical correlation between an
observed property and a descriptor does not necessarily mean
causality. A credible QSPR model should describe a causal
relationship between descriptors and observable properties.
To establish the credibility of the model, it is crucial to
rationalize the physicochemical/biochemical basis of the
correlation. Unless the equation is very simple, a routine
examination of the model may not allow such rationalization
because (i) the coefficients of the equation usually represent
a combination of two or more structural trends in the model,
(ii) some structural descriptors are mathematical constructs
that may lack a direct physicochemical interpretation, e.g.
molecular connectivity indices,143 and (iii) a descriptor may
be acting as a surrogate measure for structural features which
are not characterized accurately enough by another descriptor
with a more intuitive physicochemical interpretation. For
example, the topological changes in the molecules are related
to the changes in their geometry and, thus, could act as a
measure of the shape of these molecules. However, changes
in branching can affect the electron distribution, which often
changes the reactivity or polarity. Thus, descriptors that
characterize the charge distribution can act as a better
measure of branching, and shape, than do the typical
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topological descriptors.144 As a result, emphasizing the type
of features measured by a certain descriptor could be
misleading.

In summary, to build a statistically valid QSPR model,
one must know both the essential structural features that
influence the studied property and the nature of the descrip-
tors involved.

4. Simple Physical Properties Involving Single
Molecular Species

Most physical properties of organic compounds depend
functionally upon the number, kind, and structural arrange-
ment of the atoms in the molecule. The number and kind of
atoms are both constant in isomers, and hence, the differences
in their physical properties are due to structural relationships.
Experimentally determined values of many fundamental
properties are unavailable in the literature, and their measure-
ment is costly and time-consuming. As a result, accurate
prediction of properties of compounds has become increas-
ingly important and useful to the producers and consumers
of organic chemicals.

4.1. Boiling Points
Boiling point (conventionally at 760 mmHg pressure) is

important for the characterization and identification of a
compound. It also provides an indication of the volatility of
a compound. Other physical properties, such as critical
temperatures,145 flash points,146 and enthalpies of vaporiza-
tion,147 can be predicted or estimated from boiling points.
With the increased need for reliable data for optimization
of industrial processes, it is important to develop reliable
QSPR models for the estimation of normal boiling points
for compounds not yet synthesized or whose boiling points
are unknown.

Many methods have been developed for the estimation of
the normal boiling points of compounds, and numerous
QSPR correlations have been reported. Early attempts were
made to correlate boiling points of homologous hydrocarbons
with the number of carbon atoms or molecular weight.148

Later methods employed physical parameters such as para-
chor and molar refractivity.149 Earlier methods for the
estimation of boiling points have been summarized by
Rechsteiner147 and Horvath.150 Efforts were made to estimate
boiling points by group contribution additivity (GCA)147,151

based on the assumption that cohesion forces in liquids are
predominantly short-range152 and proceed from the division
of a molecule into predefined structural groups, each of which
adds a constant increment to the value of the property.153

Group contribution methods provide good prediction of
boiling points,154,155 with an average absolute error of 15.5
K, for small and nonpolar molecules. However, GCA
methods are limited to molecules containing groups present
in the calibration set of molecules, and some group contribu-
tion schemes are not comprehensive enough to cover multiple
substitutions of functional groups.

Aside from simple correlations of boiling points with the
carbon number or molecular weight for homologous series
of compounds, Wiener was the first to correlate boiling points
with structurally based topological descriptors.7 Wiener
introduced two structural parameters, path number W (named
later the Wiener index), defined as the sum of the distances
between any two carbon atoms in the molecule,7 and Wiener
polarity index (P), defined as the number of unordered pairs

of vertices for which the distance between any two verteces
is equal to 3. Based on these indices, he predicted the boiling
points of paraffins with an average error of 1 °C.7 Other
topological indices, including the Randić,11 and Kier and
Hall15 molecular connectivity indices, have been successful
in correlating the boiling points of alkanes and amines.15 For
more than four decades, the correlation of boiling points of
hydrocarbons with chemical structure has been of consider-
able interest. However, for better predictability of a property
in the form of a general model, a search for better descriptors
has been a focal point of QSPR research.

At present, a large number of QSPR models have been
developed for the correlation and prediction of boiling points
of diverse classes of organic compounds, such as hydrocar-
bons, halohydrocarbons, alcohols, carbonyl compounds,
amines, nitriles, pyrans, furans, thiophenes, sulfides, ethers,
and peroxides. Some QSPR models previously reported for
predicting boiling points are summarized in Table 1.

Katritzky et al.156 derived a two-parameter QSPR model
for a training set of 298 diverse compounds (saturated and
unsaturated hydrocarbons, halogenated compounds, and
hydroxyl, cyano, amino, ester, ether, carbonyl, and carboxyl
functionalities) using CODESSA (Figure 3). The two de-
scriptor linear equation showed R2 of 0.954 and is robust,
as shown by the statistically significant squared cross-
validation coefficient R2

CV of 0.953 with standard error s of
16 K. Importantly, the two parameters selected by the
descriptor forward selection procedure, the cubic root of the
gravitation index (GI1/3) and the hydrogen donor charged
surface area (HDSA-2), are understandable in physical terms.
The gravitation index describes the distribution of the mass
of a molecule about its center of gravity and is associated
with dispersion and cavity-formation effects in liquids. The
hydrogen donor charged surface area is a measure of the
propensity of a compound to form hydrogen bonds. The two-
parameter QSPR equation reflects quantitatively the well-
known fact that the boiling point of a compound depends
on the mass of its molecules and their tendency to stick
together, and it is equally well-known that the most important

Figure 3. Plot of calculated vs experimental boiling points of 584
compounds using the 8-parameter model. Reprinted with permission
from ref 157. Copyright 1998 American Chemical Society.
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Table 1. QSPR Models Developed for Prediction of Boiling Points

type of compd N molecular descriptor QSPR methoda R2 s ref

alkanes 94 TIs (W, P) MLR 0.97 (avg) Wiener7

olefins 123 TIs (8) MLR 0.998 1.78 Stanton et al.158

alkanes 74 TIs (5) MLR 0.999 1.86 Needham et al.159

ad hoc (5) 0.998 2.0
alkanes (C2-C7) 21 TI (Kier connectivity index

�1/3)
RA 0.999 2.825 Randić et al.160

furans and tetrahydrofurans 209 CPSA MLR 0.968 11.2 Stanton et al.158

furans, tetrahydrofurans, and
thiophenes

209 TIs, electronic, geometrical RA 0.969 11.2 Stanton et al.161

alkanes (C2-C7) 72 TIs (LOVI’s) RA 0.994 3.9 Balaban et al.162

alkanes 150 TIs (distance matrix) MLR(2) 0.981 5.93 Mihalić et al.163

halogenated alkanes (C1-C4) 532 constitutional and connectivity
(6)

MLR 0.970 10.94 Balaban et al.164

acyclic ethers, peroxides,
acetals, and their sulfur
analogues, aromatic
compounds

185 TIS(3) MLR 0.971 8.2 Balaban et al.165

furans/THFs, thiophenes, and
pyrans)

299 TIs, electronic RA 0.962 11.8 Stanton et al.166

pyrans 178 (pyrans) geometrical, CPSA(11) 0.954 13.5
pyrroles 278 (pyrrole) (7) 0.962 12.3
pyridines 291 TIs, electronic, CPSA RA 0.933 15.0 Egolf et al.167

haloalkanes C1-C4 276 constitutional and topological NN(5-10-1) 0.982 8.5 Balaban et al.168

(straight-chain, branched,
cyclic hydrocarbons)
(halogen, alcohol, cyano,
amino, ester, ether, carbonyl,
and carboxylic acid
functionalities)

268 constitutional, topological, and
CPSA (8)

RA 0.976 11.85 Egolf et al.169

hydrocarbons from DIPPR
Database

296 electronic, CPSA, topological,
mol. weight

MLR(6) 0.994 rms ) 6.3 Wessel et al.170

267 NN(6:5:1) rms ) 5.7
O, S, and halogen containing

compounds
248 constitutional, topological, and

CPSA (10)
RA 0.982 11.6 Wessel et al.171

N containing compounds 90 constitutional, topological,
geometrical, and CPSA (10)

RA 0.980 10.7 Wessel et al.171

alcohols, alkanes 245 atom-type E MLR 8 K Hall et al.172

diverse organic compounds 298 constitutional, topological,
geometrical, and CPSA (4)

MLR 0.973(4) 12.4 K Katritzky et al.156

0.954(2) 16.15 K
diverse organic compounds 298 atom type electrotopological

indices
ANN 0.995 5.30 Hall et al.173

C2-C9 74 constitutional and topological PCA (4) 0.980 Kuanar et al.174

C2-C9 74 hierarchical orthogonalized
partially ordered molecular
descriptors (7)

least square fit 0.977 Klein et al.175

alkanes and cycloalkanes 76 detour indices, w (1) QR 0.961 12.1 Trinajstić et al.176

Ww(1) 0.990 6.2
C3-C9 73 topological (1) MRA 0.960 Kuanar et al.177

compounds containing C, H,
N, O, S, F, Cl, Br, and I

584 constitutional, topological,
geometrical, and CPSA (8)

MLR 0.965 15.5 Katritzky et al.157

compounds containing
halogen, O, and S
halogenated alkanes (C1-C4)

185 constitutional, topological,
geometrical, and CPSA(6)

MLR 0.984 6.3 Ivanciuc et al.178

534 0.990(5) 9.0(5)
benzenoid hydrocarbons 22 distance based TIs (2) MLR 0.992 12.2 Plavšić et al.179

acyclic compounds containing
O or S atoms

185 constitutional, atom and bond
weighted

MLR(5)(4) 0.978 7.19 Ivanciuc et al.180

TIs based on
electronegatitivity and
covalent radius

0.973 7.98

chlorosilanes 74 constitutional, topological,
geometrical, and CPSA (8)

MLR 0.996 6.09 Bunz et al.181

alcohols 58 TIs (weighted path number) MLR(3) 0.994 3.91 Randić et al.182

manohaloalkanes 45 connectivity TIs MLR 0.965 10.00 Balaban et al.183

acyclic carbonyl compounds 200 TIs MLR 0.964 6.93 Balaban et al.184

diverse compounds 241 constitutional, tolopological,
geometrical, and CPSA (8)

NN(8-3-1) 7.75 Goll et al.185

sulfides 21 connectivity TIs RA 0.992 2.61 Randić et al.186

QR 0.996 1.83
alkanes 21 variable connectivity based TIs RA 0.998 2.481 Randić187

acyclic and cyclic
hydrocarbons

180 distance related TIs(4) MRA 0.985 5.31 Lučić et al.188

alcohols 58 weighted path related TIs MRA 0.978 3.64 Randić et al.189

cycloalkanes and
alkylcycloalkanes

42 variable connectivity based TIs RA 0.997 3.029 Randić et al.190

acyclic carbonyl compounds 200 constitutional, topological,
geometrical, and CPSA

MLR 0.976 5.6 °C Ivanciuc et al.191

heterogeneous organic
compounds

1168 connectivity indices, kappa
shape index, dipole moment,
sum of atomic number

fuzzy, ARTMAP, BPNN 2.09% Espinosa et al.192

10.3%
hydrocarbons, aldehydes,

ketones, thiols, and alkoxy
silicon chlorides

TIs MLR 0.990 <0.5 Zhou et al.193

a MLR, multilinear regression; RA, regression analysis; ANN, artificial neural network; PCA, principal component analysis; QR, quadratic regression;
TI, topological inices.
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attractive force between molecules is hydrogen bonding. The
four parameter model showed improved statistical results (R2

) 0.973, s ) 12 K) and includes additional descriptors: the
most negative atomic partial charge and the number of
chlorine atoms. Katritzky et al.157 extended their previous
work and obtained a general model for boiling points for a
large set of 612 diverse compounds consisting of C, H, N,
O, S, F, Cl, Br, and I atoms based on molecular descriptors
calculated solely from structure using CODESSA PRO.
QSPR models were developed for various classes of com-
pounds and also for the combined set. An eight-parameter
MLR model gave R2 ) 0.965 and s ) 15.5 K for 584
compounds. The descriptors include the previously used GI1/3

and HDSA-2 and an additional six descriptors (NF/N, NCN,
HASA-1, TI, CSA-2H, and CSA-2Cl). The validity of the
model was tested for 28 polyfunctional compounds, and
except for three compounds, the predicted values were within
the standard error. This correlation covers a larger diversity
as compared to other QSPR models having a standard
prediction error of 15.5 K and uses descriptors calculated
solely from the molecular structures.

The applicability of several novel descriptors has been
investigated for developing QSPR models of boiling points
of diverse sets.193-195 In a recent paper, Zhou et al.194 used
a novel topological index Nt based on equilibrium electrone-
gativity and relative bond length, and path numbers P2 and
P3 to develop ANN models for the boiling points of alkanes,
aldehydes, ketones, and mercaptans. The authors obtained
QSPR models with correlation coefficients, R2 ) 0.99, and
standard error, s < 0.5.

4.2. Melting Points
Melting point is a fundamental physical property specify-

ing the transition temperature between solid and liquid
phases. It has been used as a criterion of purity of a
compound and has also been used for the prediction of other
physical properties such as aqueous solubility196-198 and
liquid viscosity.199 Melting point has also been successfully
used as a descriptor in correlations with the aqueous
solubility of chlorophenols200,201 and skin corrosivity of
organic acids, bases, and phenols.202 Since melting point
affects the solubility of a compound, techniques for the
estimation of the melting point of organic compounds would
significantly assist medicinal chemists in designing new drugs
with a specified range of melting point and solubility. Melting
point also affects the toxicity of a compound through its
solubility.203

The melting points of organic molecules in general depend
on the arrangement of atoms in the crystal lattice as well as
upon the strength of the pairwise group interactions.204,205

Melting point is determined by the strength of the crystal
lattice, which, in turn, is controlled primarily by three factors:
intermolecular forces, molecular symmetry, and conforma-
tional degrees of freedom of a molecule.203 Further, molecular
motion in crystals affects melting point, which depends on
the size and shape of the molecules, on their orientation in
the crystal, and on temperature.206 Importantly, melting point
is often not unambiguous. Many compounds crystallize in
more than one form, each with a different melting point,
and hence exhibit the phenomenon of polymorphism. Phase
transitions are complicated by polymorphism; molecules that
exist in different crystal forms have their own distinct
properties, including heat capacity and melting point. Ad-

ditionally, measurements of melting points are affected by
the purity of the compound and by experimental error.

Despite the large amount of melting point data available
and knowledge of melting point transition, the correlation
and prediction of melting points of diverse sets of compounds
is still very difficult. Various QSPR methods, such as the
property-property relationship (PPR),207 and group contribu-
tions208-210 have been used for the prediction of melting point.
However, the group contribution methods generally have
difficulty in providing reliable estimates of melting points,
because they depend heavily on the nonadditive structural
features, such as intermolecular interactions and molecular
symmetry.210 A comprehensive review has appeared of the
relationship of melting points with chemical structures.211

Successful predictions of melting points have been achieved
for 24 normal alkanes (R2 ) 0.998, s ) 0.51) using
topological indices such as the carbon number, Wiener index,
and the Balaban distance sum connectivity index.212 How-
ever, QSPR models developed by Needham et al.159 using
structural parameters show poor predictability (R2 ) 0.570,
s ) 23.8) for 56 normal and branched alkanes.

Abramowitz and Yalkowsky213 correlated the melting
points of 85 rigid, non-hydrogen bonding compounds with
their boiling points and symmetry numbers to study the effect
of symmetry on the melting point of organic compounds.
The authors found a multiparameter correlation (R2 ) 0.880
and s ) 22.8) of melting point with four variables such as
boiling point (bp), logarithm of symmetry number (SIG-
MAL), the cube of eccentricity of the compound (EXPAN),
and the number of groups that are in an ortho position to
another group (ORTHO).

Dearden203 developed a five-parameter model (R2 ) 0.885,
s ) 24.6 K) for the prediction of melting points of a series
of 42 anilines using descriptors based on hydrogen bond
donor ability (R), the hydrophobic substituent constant (π),
the molar refractivity (MR), the STERIMOL width parameter
(B2), and the indicator variable of meta substitution (I3).

Charton and Charton studied the correlation of melting
points of a combined set of 366 branched and normal
substituted alkanes using variables capable of accounting for
the packing energy contribution of the alkyl group and found
better predictability (R2 ) 0.9185, s ) 17.9).214

Six-descriptor QSPR models (R2 ) 0.931, R2
CV ) 0.816)

of 141 pyridines and piperidines,215 and (R2 ) 0.857, R2
CV

) 0.843, s ) 36.1) for pyridines and substituted pyridines
of 140 compounds216 were obtained for the prediction of
melting points. The descriptors contributing to the above
models are related to the hydrogen bonding ability of the
compound, intermolecular interactions in condensed media,
crystal lattice packing, the band gap between solid insulators,
and the valence band and the unoccupied band.

A comparative study on the prediction of physical proper-
ties of aldehydes (n ) 27, R2 ) 0.833), amines (n ) 48, R2

) 0.795), and ketones (n ) 30, R2 ) 0.865) using five
different molecular descriptors (topological, electronic, and
geometrical) has given moderate correlations between the
structures and melting point.22

The melting point of a large data set of 443 mono- and
disubstituted benzenes has been correlated with a set of
structural parameters, and a nine-parameter model with (R2

) 0.837, s ) 30.19 K) was obtained as shown in Figure
4.217 Six-parameter equations were used to describe each of
the individual ortho-, meta-, and para-substituted benzene
subsets. In this QSPR investigation the descriptors related
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to hydrogen bonding ability, molecular packing in crystals
(effects from molecular shape, size, and symmetry), and other
intermolecular interactions such as charge transfer and
dipole-dipole interactions contributed to the prediction of
melting point.

Molecular connectivity parameters including molecular ID
numbers, atomic ID numbers, and variable linear combina-
tions as descriptors have shown promising correlations in
predicting various properties.218-221A QSPR model (R2 )
0.856, s ) 16.79 °C) was developed for prediction of the
melting point of a series of 1,2,3-diazaborine compounds (n
) 72) based on the electronic and topological descriptors
from molecular structures.222 The most important molecular
descriptors describing this physicochemical property were
the sum of the atomic charges for the heteroatoms, the sum
of the Randić connectivity indexes (0�, 0�1, and 0�2), the total
number of atoms in the molecule, and the volume of the
box in which the molecule fits. In addition to the regression
techniques, a back-propagation neural network was used to
predict the melting points successfully. The authors noted
that the melting points of 1,2,3,-diazaborine compounds can
be described by electrostatic interactions mediated by atomic
charges and steric properties.

Melting point models have been reported previously for
smaller alkanes. Burch et al.223 recently developed multipa-
rameter models to predict melting points of alkanes having
10-20 carbon atoms and only one methyl group, which are
of special interest to petroleum engineers manufacturing
synthetic diesel fuel. A nonlinear regression model (n ) 69)
with satisfactory predictability was obtained based on the
number of carbon atoms, the Wiener path numbers, the mean
Wiener index, and the methyl locant index.

Gramatica et al.224 used weighted holistic invariant mo-
lecular descriptors (WHIM), 3D molecular descriptors based
on the size, shape, symmetry, and atom distribution of the
molecules, for the correlation of melting points of polychlo-
rinated biphenyls (PCBs). A four-parameter model (R2 )
0.82, s ) 21.25) was obtained for melting points ranging
from 16.5 to 310 °C for 82 PCBs out of 66 WHIM
descriptors. The model found that the melting points
depended on the size variables (both directional, Am and Tu,
and nondirectional, L2V) and on symmetry variables G1p.

The increasing importance of ionic liquids225,226 underlines
the significance of understanding melting behavior. A six-
descriptor QSPR model (R2 ) 0.788) for the prediction of
melting points of 126 structurally diverse pyridinium bro-
mides in the temperature range 30-200 °C was obtained
using molecular descriptors calculated by the CODESSA-
PRO program.227 The model obtained was based mainly on
the descriptors such as information content indices, total
entropy, and the average nucleophilic reactivity index for
the nitrogen atom. The melting points of 104 substituted
imidazolium bromide based ionic liquids were correlated with
molecular descriptors.228 The data set was divided on the
basis of the N-substituents into three subsets: A, B, and C
consisting of 57, 29, and 18 compounds. Another set D was
formed consisting of 48 benzimidazolium bromides. Five-
parameter correlations were obtained for set A (R2 ) 0.744),
set B (R2 ) 0.752), and set D (R2 ) 0.690), while set C was
correlated with a three-parameter equation with R2 ) 0.943.
The descriptors involved in the correlations reflect both the
intermolecular interactions and the influence of intramolecu-
lar electronic effects on those interactions. QSPR models
were also developed for the melting point data of 126
pyridinium bromides based on molecular descriptors calcu-
lated by the DRAGON software.229 Regression trees were
initially built for the variable selection, and by use of a
counterpropagation neural network (CP-NN) approach, a
reasonable result was achieved (R2 ) 0.748). The authors
obtained qualitative predictions for a new set of nine
compounds, all with low melting points being recognized
by several methods: the decision tree, the ensemble of trees,
and the CP-NNs.

Bergstrom et al. investigated the role of calculated 2D and
3D molecular descriptors in predicting melting points of
druglike compounds and classification of solid drugs.230 The
melting points of 277 structurally diverse druglike com-
pounds were taken from the Merck Index. The normal
distribution of data showed the majority of compounds
displaying melting points between 140 and 160 °C. Cor-
relations between the calculated descriptors and the melting
point values were established with the PLS projection to
latent variables using training and test sets. Three different
descriptor matrixes were used for consensus modeling. The
calculated properties were shown to explain 63% of the
melting point variations of the druglike molecules, and
the descriptors generated from the 2D representation of the
molecule were more successful in the prediction of melting
points than descriptors generated from the 3D configuration.
Descriptors for hydrophilicity, polarity, partial atomic charge,
and molecular rigidity were found to increase the melting
point, whereas nonpolar descriptors and descriptors for
molecular flexibility lowered the melting point. The authors
achieved a qualitative classification of the compounds
separated into groups of low, intermediate, or high melting
points.

QSPR models for melting points of druglike compounds
were developed based on three different software packages
(CODESSA, DRAGON, and Tsar) for molecular descriptor
generation and a combined set of all descriptors.231 The
melting point data of 323 druglike organic compounds were
used for the study. Two QSPR models with reasonable
statistical results were obtained with the combined set of
descriptors based on stepwise regression (R2 ) 0.673, s )
40.4 °C) and genetic algorithms (R2 ) 0.660, s ) 41.1 °C)
descriptor selection methods. The authors analyzed the

Figure 4. Plot of experimental vs calculated melting points of 443
compounds using the 9-parameter model. Reprinted with permission
from ref 217. Copyright 1997 American Chemical Society.
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descriptors from three different software packages and noted
the difficulty in predicting melting points of druglike
compounds. In contrast to the simple case of hydrocarbons,
interpretation of effective molecular features of complex
compounds is a difficult task because of the various entropic
parameters involved in the melting process. An eight-
descriptor regression model for the training set with R2 )
0.66 and s ) 40.9 (s ) 42 °C for the test) was obtained
using genetic algorithms.

QSPR models for the prediction of melting points of
polyamides have been recently reported232 based on the
descriptors calculated from molecular structures using the
B3LYP/6-31G(d) basis set.233,234 A four-descriptor MLR
model was obtained for a training set of 41 polyamides for
melting points (Tm (K)) with good statistical characteristics
(eq 3).

The descriptors involved in the model for polyamide
melting point temperatures Tm (eq 3) are the proportion of
methylene to acylamino in the backbone chain (PMA), the
value of benzene rings in the backbone chain (LB), the
atomic charge for oxygen in acylamino (QO), and total
molecular energy (Et).

A BPANN (back-propagation artificial neural network)
was developed using the descriptors selected by the MLR
with a four-two-one network model.232a The training set data
for 41 polyamides showed a good correlation coefficient (R2

) 0.931) and prediction (R2 ) 0.882) for the test set of 39
polyamides. The authors noted that the four-descriptor model
predicted Tm successfully for polyamides and that MLR and
BPANN are practical methods for building a QSPR model.
Furthermore, descriptors selected for the Tm are representa-
tive, and the value of Tm is governed mainly by the molecular
rigidity and polarity.

The application of semiempirical quantum chemical
descriptors calculated by the CODESSA program has enabled
the development of robust QSPR models for chain melting
temperatures (Tm). A predictive, chemically meaningful
QSPR for phosphatidylcholines provided Tm values that
agreed with the experimental values to within experimental
error.232b

4.3. Viscosities
Viscosity (η) is one of the most important physical

properties for understanding many processes in the chemical
and petroleum industries. With the increased need of reliable
data for optimization of the industrial process, it is important
to develop an effective method to predict the viscosities of
compounds for which a measured value is unavailable.
Numerous predictive methods have been reported for the
estimation of viscosities as reviewed elsewhere.151,235 Suzuki
and co-workers236,237 used QSAR/QSPR and PLS techniques
to estimate the liquid viscosity of 116 and 361 diverse
organic compounds based on experimental physicochemical
property data. The MLR model with R2 ) 0.870 obtained
for 116 compounds includes four key physical properties:
molar refraction, critical temperature, molar magnetic sus-
ceptibility, and cohesive energy. The authors also developed

a five-component PLS model based on a cross-validation
method that resulted in R2 ) 0.867 for the 116 compounds.
MLR and two-layer ANN modeling with back-propagation
were applied to derive predictive models for the liquid
viscosity of 361 organic compounds.237 A nine-descriptor
QSPR model with R2 ) 0.92 and rms error of 0.17 log units
was obtained for MLR with the predicted set of 124
compounds, resulting in R2 ) 0.93 and a rms error of 0.16
log units. The derived models allow predictive applications
with expected uncertainty factors for η of 1.5 (MLR) and
1.4 (ANN), respectively, which is reasonably accurate for
the wide range of chemical structures with η values covering
4 orders of magnitude. The use of experimental properties
as independent variables in the QSPR model for liquid
viscosity as proposed by the Suzuki research group makes
their application difficult for a significant set of organic
compounds whose properties (independent variables in the
model equation) have not been determined.

Ivanciuc et al.238 developed a QSPR model for the
prediction of liquid viscosities of a diverse set of organic
compounds based on molecular descriptors solely calculated
from structures using CODESSA PRO. A five descriptor
MLR model with R2 ) 0.846 and s ) 0.37 was obtained for
the prediction of η of 337 organic compounds. The five
descriptors relating to the QSPR model for η are molecular
weight, Randić connectivity index of order 3, hydrogen-donor
charged surface area (HDCA-2), maximum electrophilic
reactivity index for a C atom, and maximum atomic orbital
electronic population. The predictive ability of the linear
model was tested by the leave-20%-out cross-validation
method that showed stability. However, this model is limited
to compounds with polar groups.

Our group, in collaboration with others,239 obtained a five-
descriptor QSPR model for the liquid viscosity of 361 organic
compounds containing C, H, N, O, S, and/or halogens with
a statistically significant R2 of 0.854 and s of 0.22 log units.

The most important descriptor in eq 4 was found to be
the HDCA-2, which indicates that hydrogen bonding is a
key factor for liquid viscosity.

Furthermore, a five-descriptor nonlinear multiple regres-
sion model was obtained for the liquid viscosity of the same
data set of 361 compounds with R2 ) 0.908 and s ) 0.175
based on the CROMRsel method.240 The most important
descriptor involved in the model is the gravitational index,
which reflects the effective mass distribution in the molecule
and describes intermolecular dispersion forces in the bulk
liquid media (i.e., accounts simultaneously both for the
atomic masses and for their distribution within the molecular
space).239 The three electrostatic descriptors involved in the
model also reflect the bonding properties of the molecules,
i.e. their capabilities to create hydrogen bonds. In summary,
the key descriptors involved relate to the mass, size, and
shape as well as hydrogen bonding abilities of the molecules.

4.4. Refractive Indices
Refractive index (n) is an important optical property and

is used to indicate purity in material science and thus to
evaluate the applicability of materials for various purposes.

Tm (K) ) 300.1545 - 23.5783PMA + 55.9903LB +
53.0969QO - 0.3119Et (3)

n ) 41, R2 ) 0.900, R2
CV ) 0.931, F ) 104.5, s ) 9.98

η ) -10.3 + 1.77HDCA-2 + 0.000557GI + 2.78Nrings +

20.2FPSA-3 + 0.0897Emin(C)

n ) 361, R2 ) 0.854, R2
CV ) 0.840, F ) 414.1,s ) 0.22

(4)
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It is related to other physicochemical properties such as
polarizability, critical temperature, surface tension, density,
and boiling point. Unlike the molar refraction, the refractive
index was not used in many QSPR studies before 1990. In
an early work, in 1993, our group correlated refractive indices
of three different data sets of aldehydes, amines, and ketones
with molecular descriptors.22 QSPR models were developed
for each class of compounds with correlation coefficients >
0.90. The topological descriptor Randić index is related to
the refractive indices for the three diverse sets of compounds:
aldehydes, amines, and ketones. Furthermore, we reported
a five-parameter QSPR model (R2 ) 0.945, s ) 0.0155) for
the refractive index of a structurally diverse set of 125
compounds (hydroxyl amino, ether, ester, carbonyl, cyano,
and carboxylic functionalities, halogenated, saturated and
unsaturated hydrocarbons).241 The five parameters included
the HOMO-LUMO energy gap, minimum electron-nuclear
attraction for a C atom, PPSA-2 [Zefirov’s PC], HDSA
[semi-MO PC], and gravitation index on all bonds. The
calculated versus observed plot is shown in Figure 5. An
estimated average error of 0.8% was achieved for the
predicted values and can be used for the prediction of
refractive indices with a high degree of confidence.

In an extension to this work, we correlated refractive
indices of a set of linear polymers consisting of homochain
polymers (only carbon atoms in the main chain) and
polyoxides, and also a few polyamides and polycarbonates.242

In the calculation of descriptors for polymeric molecules,
the methods used for small molecules cannot be applied.
However, in the case of linear polymers, we used the
repeating unit to calculate appropriate descriptors for 95
compounds.

A four-descriptor QSPR model (R2 ) 0.929, s ) 0.0175)
was obtained for a set of 121 linear polymers using simple
molecular descriptors: the sum of valence degrees (SVDe),
the degree of unsaturation (DU), the relative number of
halogen atoms (RNH), and the electrostatic attraction and
the hydrogen bond between the main chains (Q().243 The
statistical characteristics of the general QSPR model using
four descriptors are given by eq 5.

The four simple descriptors used in this model illustrate
the molecular size and the intermolecular forces of polymers
through structural analysis on the polymers. This model was
found to have an average prediction error of 0.87%, comparable
with the QSPR model obtained previously for 95 compounds,
including mostly quantum-chemical descriptors.

Refractive indices of a series of organic solvents of the
structural formula X-Y have been correlated with molecular
descriptors by using CODESSA.244 A comparative study has
been reported based on the heuristic and best multilinear
regression techniques included in CODESSA and with the
multivariate PLS/GOLPE method. The best correlation for
the refractive index was obtained using the GOLPE proce-
dure (R2 ) 0.9501, SDEPi,LOO ) 0.0159, and SDEPe )
0.0180).

A five-descriptor QSPR model (R2 ) 0.902, s ) 0.0055)
was obtained for refractive indices of 149 alkanes (C2 to
C20) using molecular descriptors based on the polarizability
index (PEI) calculated from eigenvalues of the bond adja-
cency matrix (eq 6).245

The predictive ability of the model was tested using the
cross-validation procedure, and good statistical results were
obtained (q2 ) 0.879, PRESS ) 0.0060, F ) 207.3). The
authors designated a few outliers in the above QSPR model
and suggested that the descriptor set could not be interpreted
well for alkanes with branched structure.

The refractive indices of 180 diverse phosphates and
diphosphates, comprising various types of structures (normal
and branched aliphatic, or alicyclic and aromatic) for different
temperatures in the range of 20-25 °C, were successfully
predicted using an ANN trained with the back-propagation
procedure246 based on molecular descriptors. The best ANN
model (40:2:1) showed good predictive ability with the
average prediction error of 0.24% and R2

CV equal to 0.99.
QSPR models were developed for refractive indices of 186

saturated compounds, 200 aromatic compounds, and the
combined set of 386 compounds based on molecular descrip-
tors.247 The statistical characteristics of the three models are
(n ) 186, R2 ) 0.9921, s ) 0.004 K, F ) 3054), (n ) 200,
R2 ) 0.9902, s ) 0.005 K, F ) 2052), and (n ) 386, R2 )
0.9881, s ) 0.008 K, F ) 34774), respectively. However,
the standard deviation, s, for the combined data set increased
from 0.004 to 0.008 compared to the saturated compounds
and 0.005 compared to the aromatics. Consequently, there
is a need for further investigation to build a general QSPR
model with higher precision.

Linear and nonlinear QSPR models for the prediction of
refractive indices of polymers were developed based on a
diverse data set of 120 polymers by using MLR analysis
and feed-forward ANNs.248a A linear model was obtained
with R2 ) 0.943 and s ) 0.016 for a training set of 100
compounds. The mean relative error (MRE) of 0.79% was

Figure 5. Calculated vs observed refractive index values by using
a 5-parameter model. Reprinted with permission from ref 241.
Copyright 1998 American Chemical Society.

N (298 K) ) 1.476 - (5.202 × 10-4)SVDe +

(2.337 × 10-2)DU - 0.187RNH - 0.547Q(

n ) 121, R2 ) 0.929, R2
CV ) 0.926, s ) 0.0175, F ) 378.1

(5)

nD ) 1.1848 + 0.0224SX1CH - 0.0374SX1CC +

0.00018SVij + 0.00047PEI + 0.1127N2/3

n ) 149, R2 ) 0.902, s ) 0.0055,F ) 264.4
(6)
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obtained for the whole data set based on the trained model.
The nonlinear model showed better statistical results (R2 )
0.973, s ) 0.0118) for the training set and (R2 ) 0.961, s )
0.0144) for the test set, respectively.

Good QSPR models have been developed for the predic-
tion and rationalization of the refractive indices of a wide
variety of simple organic/organosilicon compounds (3 pa-
rameters, R2 ) 0.924)248b and polymer matrices (2 param-
eters, R2 ) 0.924)248c using SAM1 and AM1 CODESSA
descriptors.

4.5. Densities of Organic Liquids
The normal density (i.e., the density at 1 atm and 20 °C)

is a major physicochemical property for characterization and
identification of compounds. Density can be estimated from
molecular weight (Mw) and molar volume (Vm) by the simple
formula d ) Mw/Vm. In addition, it can be used to predict or
estimate properties such as critical pressure, viscosity,
thermal conductivity, diffusion coefficients, and surface
tension.249 Kier and Hall15 showed a correlation with R2 )
0.815 for the density of a set of 82 alkanes as an inverse
relationship with the Randić index of order 1 (1�). QSPR
models for density of a set of aldehydes, amines, and ketones
were also developed using molecular descriptors of topologi-
cal, electronic, and geometrical types.22 The three-parameter
model had a R2 value of 0.922 and R2

CV ) 0.896, and it
included the connectivity descriptors, 1�V, together with two
information theoretic indices (0IC and 0SIC) for a set 59
aldehydes. Further, the four- and five-descriptor models
constructed resulted in the improvement of the regression
coefficients (R2 ) 0.935, R2

CV ) 0.901) and (R2 ) 0.941,
R2

CV ) 0.915), respectively. The four-parameter QSPR model
for the density of 109 amines had R2 ) 0.940 and R2

CV )
0.931 and included three topological descriptors, the Randić
index, 1�, the shape index, 1k, the information index, 0SIC,
and the electronic descriptor, FNSA-1. A four-parameter
QSPR model for the densities of a set of 60 different ketones
with excellent fit and high stability (R2 ) 0.955, R2

CV )
0.947) included two descriptors (3� and 1SEPD) in their
squared form in combination with two information indices
of the zeroth order (0EPD and 0SEPD).

Gakh et al.250 devised a computational method to predict
the densities of organic compounds based on their molecular
structure, which used graph theory to encode the structural
information in numerical form included as input for the ANN
model. The ANN model was trained using a data set of 109
saturated hydrocarbons (C6-C10), and it gave an average
error of 0.60% for the test set of 25 compounds. Zhang et
al.251 developed a nonlinear ANN model by using a set of
five molecular descriptors (W, P, w, p, s) for the prediction
of densities of 85 alkenes (C4-C20). The five parameters are
as follows: W based on the distance matrix of a molecule;
P, the polarity number; w, representing the absolute contribu-
tion of a double bond to the whole size of a molecule; p,
indicating the absolute contribution of a double bond to the
shape of the molecule; and s, representing enantiomers of
alkenes, respectively. Their ANN model showed the average
RSD (relative standard deviation) of 0.44% for the test set
of 16 alkenes.

A general two-parameter correlation model developed for
the prediction of densities of 303 diverse organic compounds
(containing C, H, N, O, S, F, Cl, Br, and I) gave promising
results with R2 ) 0.975 and s ) 0.046 g/cm3.252 The two
parameters involved in the correlation are the intrinsic density

values calculated as the ratio of the molecular mass over
the theoretically calculated van der Waals molecular volume,
and the total molecular electrostatic interaction per atom in
the molecule (analogous to the Madelung energy in ionic
crystals). Further correlation equations were developed for
densities of various subsets of organic compounds that
included one to four parameters having standard errors, s,
ranging from 0.027 for hydrocarbons to 0.085 g/cm3 for
halogenated compounds.

An excellent 1-parameter correlation (R2 ) 0.929, SDEC
) 0.094) for a training set of 61 compounds and a standard
error of prediction (SDEPe ) 0.090) for 28 compounds was
obtained with the relative molecular weight.244 The molecular
weight and density correlated well within a homologous
series of compounds, taking into account the structural
heterogeneity of the training set. By the addition of another
parameter, the minimum value of the net atomic charge for
the variable molecular fragment (f-Min net atomic charge),
both the model statistics (R2 ) 0.960, SDEC ) 0.071) and
the predictive capability of the regression model (SDEPe )
0.072) increased. Further, the GOLPE multivariate analysis
was applied for the correlation of density that included four
parameters and three PLS components resulting in R2 )
0.948 and SDEC ) 0.079, and a relative loss in predictive
ability with SDEPe ) 0.093. Furthermore, the PLS pseu-
doregression coefficient of the relative molecular weight
presents the highest value among those of the four selected
descriptors and confirms convergence between this approach
and the MLR methods.

Toropov et al.253-258 estimated the predictive potential of
the OCWLGI (optimization of correlation weights of local
graph invariants) based on Morgan extended connectivity
of LHFGs and GAO (graphs of atomic orbitals) in modeling
density and other physicochemical properties. The statistical
characteristics of the QSPR model (R2 ) 0.984, s ) 3.602)
and (R2 ) 0.976, s ) 3.790) were obtained for the densities
of a training set of 66 compounds and a test set of 67
compounds, respectively, based on the molecular descriptor
0XCW(GAO,EC1), comprising 26 local invariants.253

Multivariate regression models have been developed to
predict the densities of alkanes and monosubstituted alkanes
based on the molecular descriptors calculated from the
eigenvalues of the bonding orbital-connecting matrix, po-
larizability effect index (PEI) of alkyl, and Pauling’s elec-
tronegativity concept.259 A five-descriptor QSPR model was
obtained for 213 compounds with a significant value of R2

) 0.992, the rms error 0.0208 g/cm3, the average absolute
error 0.017 g/cm3, and the average relative error 1.85%
between experimental and predicted values.

4.6. Dielectric Constants
Dielectric constants measure the ability of a liquid to

solvate a charged molecular species. The dielectric constant
is frequently used as a practical parameter to characterize
the polarity of organic solvents.

A large body of theory has been developed for the
calculation of dielectric constants from properties such as
dipole moment and polarizability.260 The value of the
dielectric constant is strongly related to the chemical structure
of a molecule, intermolecular interactions, and external
conditions (temperature, pressure, etc.) Several methods have
been used for the calculation of dielectric constants.261

Significant progress is made through the use of the Onsager
equation. However, this does not take into account significant
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intermolecular interactions, especially for hydrogen-bonding
liquids. Computational efforts involving computer simulation
and molecular dynamics are also limited for the hydrogen-
bonding solvents, due to the sensitivity of the dielectric
constant to the long-range intermolecular interactions. The
earlier available theoretical approaches simply do not allow
their use as general purpose tools for calculating dielectric
constants of a wide variety of compounds.

The QSPR approach is an alternative and mathematically
simpler option for the prediction of the dielectric constant.
Cocchi et al. used MLR analysis and the multivariate PLS
method to develop QSPR models for dielectric constants of
organic solvents244 based on molecular descriptors calculated
using CODESSA. A three-descriptor MLR model was
obtained for the dielectric constants of a training set of 23
compounds with R2 ) 0.9564. Dielectric constant values
ranging from 2 to 41 were used in the study. The standard
deviations, s, of the training (n ) 23) and test sets (n ) 20)
were 2.262 and 4.650, respectively. The authors obtained a
15 variable PLS model using the GOLPE procedure with
R2 ) 0.974, and the standard errors for the training and test
sets were 1.576 and 3.213, respectively. However, this model
seems to be overfitted.

A large diverse data set of dielectric constants for 497
compounds (ranging from 1 to 40) was used by Schweitzer
and Morris for QSPR modeling.262 They used molecular
descriptors such as the dipole moment, polarizability, counts
of elemental types, an indicator of hydrogen bonding
capability, charged partial surface area (CPSA) descriptors,
and molecular connectivity. The authors obtained a 10-
parameter nonlinear QSPR model based on the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) training algorithm with
training set error (rms) 3.77 and test set error 2.33,
respectively. The data set was divided into three: 350
compounds for the training set, 50 compounds for the
monitoring set, and the remaining 97 compounds for the test
set. The ANN model obtained is shown in Figure 6.

The analysis of the figure reveals that although there are
a number of outliers, many of the compounds have accurately
predicted dielectric constant values. Thus, 86% of the
compounds have an absolute error less than 2.0. The
molecular connectivity and CPSA descriptors were found

to make important contributions to the model. The authors
developed improved QSPR models for the prediction of
dielectric constants for various subsets of compounds.263

Their full data set consisted of 454 compounds with dielectric
constants ranging from 1 to 40. The authors divided the full
data set into eight subsets, and for each subset, molecular
descriptors were calculated as in their previous paper and
nonlinear models were constructed. The resulting combined
mean test set error for the eight local models of 1.31 is
significantly better than the mean test set error of 1.85 for
the general model. The authors have shown that the division
of the set into subsets based on functional groups allows the
development of local targeted models that result in much
more accurate predictions of a test set of compounds than
the general model.

MLR and ANN methods were used to develop QSPR
models for the prediction of the dielectric constants for the
training set of 155 diverse compounds by using molecular
descriptors based on the electronic properties of the mol-
ecules and the intermolecular interactions between the
molecules.116 A six-parameter MLR model was obtained for
the dielectric constant with a R2 ) 0.945 for 155 training
set compounds. The rms errors of the training set (n ) 155)
and prediction set (n ) 46) are 2.368 and 3.743, respectively.
A nonlinear model was obtained with R2 ) 0.948, without
noticeable improvement over the MLR model.

4.7. Polarizabilities
The polarizability of a molecule (R) is a significant

electronic property that measures the distortion of a molecule
in an external electric field. In principle, the polarizability
of molecules is governed by the strength of the attractive
interaction between electrons and atomic nuclei. Polariz-
ability is determined experimentally from the molar refraction
(MRD) values, which are calculated using the refractive
index, nD, the density, F, and the molecular weight, MW,
using the Lorentz-Lorenz equation (eq 7):

Figure 6. Calculated vs observed dielectric constant values using the 10-parameter nonlinear model. Reprinted with permission from ref
262. Copyright 1999 American Chemical Society.

MRD ) [nD
2 - 1/nD

2 + 2]MW/F ) 4/3πN0R (7)
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where π ) 3.14..., N0 is the Avogadro constant, and R is
the polarizability.

Polarizability has been shown to play an important role
in chemical-biological interactions. The first attempt to
apply molecular refractivity in terms of the Lorentz-Lorenz
equation to biological processes was made by Pauling and
Pressman.264 Molar refractivity is approximately additive. A
number of additive models for calculations of MR have been
proposed using both the atomic and bond increments.265,266

Leo calculated the MR from the fragments based on a method
similar to that developed for octanol/water partition coef-
ficients.267 MR for a variety of molecules has also been
determined by Vogel’s group.268-270 Many QSPR models
have been reported for the calculation of the molar refractiv-
ity of compounds using molecular descriptors.159,174,177,271

Many semiempirical methods of differing accuracy have
been proposed for calculating molecular polarizabilities.272-277

Molecular polarizability influences several other physical
properties, including electronegativity,278,279 dipole mo-
ment,280 and ionization potential.281,282 A quantitative rela-
tionship between polarizability, hardness,283 and size of
different systems, such as atoms, molecules, metal clusters,
and carbon clusters, has been demonstrated.284,285 Polariz-
ability has also been related to the structural parameters, such
as the bond length alteration (BLA) and π-electron bond
order alteration (BOA).286 Polarizability has been used as
an independent variable for the prediction of vapor pressure
and octanol-air partitioning coefficients.287 Polarizability
fields derived from semiempirically determined atomic
polarizabilities have been used in three-dimensional quantita-
tive structure-activity relationships (3D-QSAR).288

Bosque and Sales289 developed a MLR for the prediction
of polarizabilities of a large set of solvents comprising 426
compounds based on the atomic composition of the mol-
ecules. The authors obtained a very good correlation (R2 )
0.9943 and R2

CV ) 0.9938) between the polarizability and
the number of atoms of each type present in the molecules
of the training set of 340 solvents. The ten different types
of atoms present in the data set were used in the correlations.
Using the same set of parameters for the prediction set
consisting of 86 solvents, a very good correlation was
obtained. The average absolute relative errors for the training
and prediction sets were 2.31% and 1.93%, respectively. The
authors also obtained average atomic polarizabilities and
provided a comparison with the previously reported values.
Other estimates of polarizability using the semiempirical
methods AM1, PM3, and MNDO for 426 solvents resulted
in high average absolute relative errors of 34.7%, 39.1%,
and 36.4%, respectively. The calculated polarizability values
were lower than the experimental ones. Contrary to the
classic additive methods, the existence of structural units such
as the numbers of double and triple bonds and the number
and size of the rings present were not considered.

A QSPR model developed by Zefirov et al. for the
prediction of molecular polarizability of a set of 613
compounds was based on atomic composition and fragment
descriptors.290 A very good correlation (n ) 613, R2 )
0.9898, s ) 0.613) was obtained using average atomic
polarizability and the additivity model proposed by Bosque
and Sales.289 Zefirov’s group included the numbers of C, H,
N, O, S, P, F, Cl, Br, and I atoms, the numbers of double
and triple bonds, and the number of aromatic bonds (aromatic
systems) as independent variables to obtain very good results

(R2 ) 0.9967, s ) 0.38) for a training set of 552 compounds.
The test set of 61 compounds gave an rms error of 0.75.

QSPR models were developed for the prediction of
polarizability of organic compounds, including halogenated
compounds based on theoretical and pseudoconnectivity
descriptors.291 A four-descriptor regression model based on
a linear combination of the basis indices (0�V,1�, DV, � t

V,
U0) was obtained for a set of 54 organic compounds with
R2 ) 0.964 and s ) 0.75.

Hansch et al.292 correlated polarizability (eq 8) with the
number of valence electrons (NVE) for 37 compounds and
reported R2 of 0.924.

Agin et al.293 used electronic polarizability to correlate the
narcotic activity of a group of 39 compounds with R2 )
0.973. The correlation of the narcotic activity of 37 com-
pounds with MR had R2 ) 0.969. Hansch et al. reported
several QSAR correlations based on MR and NVE.292,294-296

Based on the importance of the molecular polarizability
parameter in chemico-biological interactions, the correlation
and prediction of polarizabilities of 219 diverse organic
compounds were studied using calculated descriptors.297 The
authors developed MLR models for the logarithm of polar-
izability values with R2 ) 0.941, based on the descriptors
related to the charge distribution within a molecule and the
energies of the HOMO and LUMO.

A recent successful QSPR model (R2 ) 0.9845) was
developed298 for polarizability of a data set of 40 polyaro-
matic hydrocarbons (PAH) and fullerenes. The model
involved just one descriptor: the total molecular two-center
exchange energy. The model was externally validated, and
the results were in good agreement with both the ab initio
calculated and experimental property values.

4.8. Vapor Pressures
Vapor pressure (VP) plays an important role in the

transport, distribution, and fate of environmental pollutants
in the atmosphere.299 Vapor pressure is used in designing
various chemical processes, and additionally, VP can be used
in the estimation of other physicochemical properties, such
as liquid viscosity, enthalpy of vaporization, air-water
partition coefficient, and flash points.300 Vapor pressure
determines the volatility of a chemical. It governs the
exchange rate of a chemical across the air-water interface
through Henry’s Law. Vapor pressures are not determined
for an ever increasing number of chemicals due to the lack
of resources. The greatest difficulty and uncertainty arises
in the determination of the vapor pressure of low volatile
chemicals. Experimental VP data are abundant for low
molecular weight hydrocarbons but scarce for most com-
pounds with boiling points over 200 °C.

As a complement to the experimental data, numerous
correlations for estimating VP have been proposed. Many
vapor pressure estimation equations are either empirical or
based on equations of state or on the Clausius-Clapeyron
equation. Several equations are available based on the use
of other physicochemical properties.287,301-303 Several group
contribution methods were applied for the prediction of VP
of organic compounds.304-306 An ANN was applied by Kühne
et al.307 to a training set of 1200 compounds and a prediction
set of 638 compounds based on 23 parameters calculated
from chemical structure, system temperature, and melting

R(0) [Å3/molecule] ) 0.27((0.011)NVE (8)
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point of compounds, resulting in R2 ) 0.995 and 0.990 and
absolute average errors of 0.08 and 0.13 logarithmic units
for the training and prediction sets, respectively. A general-
ized model was obtained by Godavarthy et al.308 for the
prediction of VP of a diverse data set consisting of 1121
molecules, including 73 classes of chemicals taken from the
DIPPR database based on a scaled variable reduced coor-
dinates (SVRC) model equation and QSPR methodology.
The authors developed a 10-12-1 backpropagation ANN
model with average errors of less than 0.5%, based on triple
point and critical point data plus structural descriptors.

The QSPR approach is a highly promising alternative for
the estimation of vapor pressures from descriptors derived
solely from the chemical structure. Basak et al.309 used the
hierarchical quantitative structure-activity relationship
(HiQSAR) approach for the prediction of vapor pressures
based on structural descriptors using topostructural and
topochemical parameters and an additional parameter (HB1)
related to intermolecular interactions for the prediction of
VP measured at 25 °C for 476 diverse chemicals taken from
the ASTER (assessment tools for the evaluation of risk)
database and obtained a ten-parameter model with R2 )
84.3% and s ) 0.29. Three linear regression methodologiess
ridge regression (RR), principal component regression (PCR),
and partial least-squares (PLS)swere used to develop
HiQSAR models for a VP data set of 469 chemicals based
on topological descriptors.310 The results indicated that the
RR outperforms PCR and PLS.

Liang and Gallagher311 obtained a seven-parameter MLR
model for the prediction of vapor pressure (log PL) at 25 °C
for 479 compounds using polarizability and polar functional
group counts as descriptors (eq 9).

The correlation coefficient with a single descriptor, polar-
izability (R), gave R2 ) 0.920, and the addition of the six
polar functional group counts increased the R2 to 0.957. An
ANN model (7-5-1) reported by the authors gave ap-
proximately the same results (R2 ) 0.973, R2

CV ) 0.960, s
) 0.522) as the MLR model.

Katritzky et al.312 developed a five-descriptor MLR model
for the prediction of vapor pressure, log (VP) of 411
compounds with a large structural diversity (eq 10).

Two important descriptors (GI and HDCA-2) used in the
model represent the forces of intermolecular attraction; GI

is connected with the dispersion and cavity-formation effects
in liquids, and HDCA-2 is connected with the hydrogen
bonding ability of compounds. Three additional descriptors
used in the model are as follows: the sum of the surface
area of fluorine atoms SA-2(F), the maximum net atomic
charge for a chlorine atom MNAC(Cl), and the surface area

of nitrogen atoms SA(N). The cross-validated correlation
coefficient R2

CV ) 0.947, when compared to the R2 ) 0.949,
indicates high stability of the regression equation, and the
standard error s ) 0.331 is less than that of the Liang and
Gallagher model (s ) 0.534).311

Goll and Jurs313 reported a 7:3:1 computational neural
network (CNN) model for the prediction of vapor pressure
(log VP) for a data set comprised of 352 hydrocarbons and
halohydrocarbons. The rms errors associated with the training
(n ) 270), cross-validation (n ) 30), and prediction (n )
52) set compounds used for this CNN model were 0.163,
0.163, and 0.209 log units, respectively. The less diverse
the types of compounds in the data set, the better the model
appeared to be. McClelland and Jurs314 developed an eight-
descriptor CNN model, for the prediction of log VP at 25
°C of 420 diverse organic compounds, and they obtained a
rms error of 0.37 log units for 65 compounds of an external
prediction set based only on topological descriptors. The
authors also obtained a ten-descriptor CNN model with an
improved prediction set rms error of 0.33 log units within a
descriptor range from topological, electronic, and geometrical
to hybrid types.

Cash315 developed a QSPR model for the prediction of
VP of a large data set of 1676 compounds by employing
the K-nearest-neighbors (KNN) method in a Euclidian space
based on electrotopological state indices (n ) 1676, R2 )
0.697, s ) 0.560). A modification of the KNN method using
PCA to minimize the vector sum of the vectors from the
test structure to the neighbors gave better results (n ) 1676,
R2 ) 0.733, s ) 0.526).

Vapor pressure is highly temperature dependent, and thus
temperature-dependent prediction methods are desirable.
Chalk et al.316 developed a temperature dependent model for
VP based on a feed-forward ANN (27:15:1) and quantum
chemical descriptors. The VP values ranged from -8.63 to
5.47 log-(Torr) units with temperatures ranging from 76 to
800 K. The training set of 7681 and validation data set of
861 compounds gave QSPR models with R2 ) 0.9762 and
s ) 0.322, and R2 ) 0.9758 and s ) 0.326, respectively. A
comparison with the McClelland and Jurs314 results was
made. Yaffe and Cohen317 developed a back-propagation
ANN QSPR model for the prediction of VP as a function of
temperature. The vapor pressure-temperature behavior of
the hydrocarbons (C4-C12) based on valence molecular
connectivity indices, molecular weight, and temperature was
predicted. The database of the Design Institute for Physical
Property Data (DIPPR) containing VP data for a total of 7613
homogeneous compounds was used. The average absolute
errors (see Figure 7a) and standard deviations were (11.6%,
8.0%) for the training set (n ) 5330) and (8.2%, 5.9%) for
the test set (n ) 1529), (9.2%, 7.8%) for the validation set
(n ) 754), and (10.7%, 7.8%) for the overall data set (n )
7613). Finally, Yaffe and Cohen selected a small data set of
274 hydrocarbons, analyzed the overall performance of the
7-29-1 ANN model, and compared their model with those
of Katritzky et al.,312 Goll and Jurs,313 and McClelland and
Jurs.314 Yaffe and co-workers obtained lower average and
maximum pressure estimation errors from all reported
models: 120 compounds from Goll and Jurs,313 108 com-
pounds from Basak and Mills,318 and 45 compounds from
Katritzky et al.312 were common to their data set. Katritzky
et al.,312 Goll and Jurs,313 and Basak and Mills318 reported
QSPR models for heterogeneous data sets, whereas Yaffe
and Cohen317 built their model for a homogeneous data set;

log PL ) -0.432R - 1.382(OH) - 0.482(CdO) -
0.416(NH) - 2.197(COOH) - 1.383(NO2) -

1.101(CN) + 4.610 (9)

n ) 479, R2 ) 0.960, R2
CV ) 0.957, s ) 0.534

log(VP) ) (2.30 ( 0.06) - (0.00618 ( 0.00008)GI -
(4.02 ( 0.10)HDCA-2 + (0.129 ( 0.006)SA-2(F) +
(6.02 ( 0.574)MNAC(C1) - (0.0143 ( 0.0017)SA(N)

(10)

n ) 411, R2 ) 0.949, R2
CV ) 0.947, s ) 0.331
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their greater accuracy may be due to the homogeneity of
their data set.

Katritzky et al.319 developed a general QSPR model for
the log VP at 25 °C for 645 diverse compounds taken from
their previous study312 and from that of McClleland and
Jurs.314 A four-parameter MLR model was obtained with R2

) 0.937 and s ) 0.366 based on molecular descriptors
calculated using CODESSA PRO. The four descriptors
included in the modelsthe gravitation index (all bonds), the
number of F atoms, HA dependent HDCA-1 (Zefirov PC),
and FNSA-2 Fractional PNSA (PNSA-2/TMSA) (MOPAC
PC)sgave significant contributions to the modeling of vapor
pressure. The validity of the model was tested for the subsets
of data by using the same set of four descriptors. The authors
compared their data with QSPR models previously reported
by Liang and Gallagher,311 Goll and Jurs,313 and McClleland
and Jurs.314 In their QSPR model Katritzky used fewer
descriptors and a larger number of diverse compounds to
obtain predicted values in good agreement with experimental
data with minimum standard error values (see Figure 7b).

4.9. Surface Tension
Surface tension (ST) is an important physical property

which reflects the intermolecular interaction of molecules.
Many generalized statements have been made which associ-
ate polar and hydrogen-bonding intermolecular interactions
with increased surface tension of pure liquids.320,321 Surface
tension has been shown to increase as a function of molecular
weight for a set of congeners322 and has been used to predict
other physicochemical properties.323,324 However, several
QSPR models involving ST have been published.

Multiparameter regression models were reported by
Needham et al.159 to predict surface tension at 20 °C for a
set of 68 alkanes having R2 ) 0.986, s ) 0.2 and R2 ) 0.989,
s ) 0.2 with connectivity and ad hoc descriptors, respec-
tively. Stanton and Jurs correlated the surface tension of 31
diverse organic compounds with structural descriptors in-
cluding charged partial surface area (CPSA) descriptors
which combined solvent accessible surface areas with partial
atomic charges. They found a six-parameter model with R2

) 0.908 and s ) 2.32.158 The authors also obtained good
MLR models for surface tension of organic compounds
containing 95 alkanes, 56 alkyl esters, and 35 alkyl alcohols
by employing a wide variety of topological, geometrical, and
electronic descriptors.144 Finally, a 10-descriptor QSPR model
for the combined set of data including 146 training com-
pounds and 20 external validation compounds was obtained.
The statistical results for the training and test sets were (R2

) 0.983, s ) 0.4) and (R2 ) 0.983, s ) 0.7), respectively:
the removal of an outlier from the test compounds lowered
the error value to that of the training set, and that molecular
surface area provided better results in modeling surface
tension than the van der Waals or solvent-accessible surface
area. Several different theoretical approaches have been
applied based on molecular descriptors for the prediction of
surface tension of homogeneous data sets of alkanes175,325-327

and also, for diverse classes of compounds.328,329 MLR and
CNN were employed by Kauffman and Jurs330 for the
prediction of surface tension of 199 solvents. An eight-
descriptor MLR model was obtained with R2 ) 0.835 and s
) 3.37 for the training set and (R2 ) 0.837, s ) 3.37) for
the prediction set. The CNN model showed average percent

Figure 7. (a) Comparison of the absolute errors for the predicted
hydrocarbon vapor pressures at 25 °C. Reprinted with permission
from ref 317. Copyright 2001 American Chemical Society. (b)
Scatter plot of the calculated vs experimental log(VP) values at 25
°C for 645 compounds. Reprinted with permission from ref 319.
Copyright 2007 Elsevier B. V.

Figure 8. Plot of calculated versus observed surface tension for
the training, cross-validation, and prediction set compounds using
the CNN model. Reprinted with permission from ref 330. Copyright
2001 American Chemical Society.
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errors of the predicted values of 5.3% for the training set,
6.1% for the cross-validation set, and 6.4% for the prediction
set (see Figure 8). The authors reported a general CNN model
for predicting surface tension, viscosity, and thermal con-
ductivity of compounds at a greater level of accuracy.

A QSPR model was developed for the prediction of the
surface tension of nonionic surfactants including a topological
descriptor, the Kier and Hall index of zeroth order (0�) of
the hydrophobic segment of the surfactant, and a quantum
chemical descriptor, the heat of formation of the surfactant
molecules.331 The QSPR model obtained between the surface
tension and the descriptors produced R2 ) 0.987 for the
studied 30 nonionic surfactants.

4.10. Critical Temperatures
Critical temperature is an important property determined

by intermolecular interactions between molecules in the
liquid state. Earlier estimates of the critical temperature were
made from measured quantities such as boiling points,
parachor, and molar refraction.149 Among several different
approaches, group contribution methods were successfully
employed for the estimation of critical temperatures from
molecular structures.154,209 Grigoras applied a novel approach
based on computation of the molecular surface interactions
(MSI) to estimate the critical temperatures together with
various other properties.332 Several approaches based on
molecular descriptors have also been employed for the
prediction of the critical temperatures of acyclic hydro-
carbons.159,174,175 An eight-parameter MLR model was ob-
tained by Jurs169 which included three CPSA, two topological
descriptors, and three constitutional descriptors, for the
prediction of critical temperature of 147 diverse organic
compounds with R2 ) 0.978 and s ) 11.9 K. A three-
descriptor regression model which included experimental
boiling points as one of the parameters gave a correlation of
critical temperature for 147 compounds with R2 ) 0.988 and
s ) 8.48. An improved eight-descriptor MLR model was
developed by excluding two outliers (quinoline and hexani-
trile) with an rms error of 9.16 K, and R2 ) 0.986 and by
removing another outlier (acetone) an rms error of 9.13 was
achieved.333 The authors also developed a nonlinear 8-4-1
CNN model with an observed rms error of 7.3 K for the
132 training, 7.7 K for 15 cross-validation, and 9.9 K for
the 18 prediction set compounds, respectively.

Hall and Story173 applied an ANN based on 19 atom type
electrotopological state indices for the prediction of critical
temperatures of 165 compounds with an overall relative error
ranging from 0.97% to 1.17% and a mean absolute error of
4.52 K.

One- and three-parameter QSPR models were developed
by Katritzky et al.334 to correlate the critical temperatures of
the sets of 76 hydrocarbons and 165 structurally diverse
compounds. The one-parameter model utilizing the cube root
of the gravitation index allowed the prediction of critical
temperatures for 76 hydrocarbons with R2 ) 0.953 and s )
18.9 while the three-parameter model for 165 diverse
compounds gave R2 ) 0.955 and s ) 16.8 K.

Bonchev335,336 applied an overall connectivity, a topologi-
cal complexity, and an overall Wiener index for the cor-
relation of critical temperatures of alkane isomers. The line
graph parameters337 and the modified Harary index338 also
correlated well with the critical temperatures of alkane
isomers. A fuzzy ARTMAP-based ANN QSPR model
predicted the critical temperatures of 530 compounds with

an absolute mean error of 1.4 K (0.24%) by using molecular
descriptors which included the sum of atomic numbers,
valence connectivity indices, the second-order Kappa shape
index, and the dipole moment.192 Yao et al.339 utilized a MLR
and radial basis function neural network (RBFNN) approach
for the prediction of critical temperatures of 856 organic
compounds based on molecular descriptors calculated solely
from structure. A ten-descriptor linear model was obtained
with the rms error of 16.21 K and R2 ) 0.974 for the 733
training set compounds. The rms error was 16.4 K for 123
external test compounds. A 10-33-1 RBFNN model for
the critical temperatures of 856 organic compounds gave an
rms error of 14.0 and 12.3 K for the 733 training and 14.2
K for the 123 test set compounds, respectively.

Simple topological molecular parameters based on atomic
coordination numbers for different atoms and the corre-
sponding identity of the chemical bonds were used for the
correlation of critical temperatures of 164 diverse com-
pounds.340,341 QSPR models were obtained for the correlation
of critical temperatures of 61 and 74 alkanes using the
molecular descriptors based on the eigenvalues of the bond
adjacency matrix245 with R2 ) 0.998, s ) 4.0 and the atom
adjacency matrix342 with the mean absolute error of 5.3 °C.
A five-parameter MLR model was obtained for 139 alkanes
with R2 ) 0.996 and s ) 16.1 °C based on vertex, edge,
ring, and distance related topological indices. Shacham et
al.343 applied a molecular similarity approach to various
physicochemical properties of unmeasured data, and they
obtained an average prediction error of 0.91 for the critical
temperatures of 18 compounds. Many different topological
parameters calculated from structures have been applied to
predict the critical properties of compounds.344,345 Charton346

has reviewed the nature of topological parameters in the
prediction of physicochemical properties of compounds,
noting that topological parameters are composites represent-
ing counts of the numbers of atoms, bonds, electrons, and
branching. Recently, Dobchev and Karelson90 calculated
novel parameters by the reparameterization of the AM1 based
on a nonlinear optimization technique and obtained a two
parameter QSPR model with R2 ) 0.902 and s ) 25.04 K.

Godavarthy et al.347 developed QSPR models for critical
temperatures of a diverse data set containing over 1230
organic compounds based on molecular descriptors calculated
solely from structure using CODESSA PRO. Several

Figure 9. Comparison of experimental and predicted Tc obtained
from the nonlinear BPNN model based on weighted mean square
error (WMSE). Reprinted with permission from ref 347. Copyright
2007 Elsevier B. V.
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approachessincluding linear, nonlinear, and genetic algo-
rithms (GA)swere employed in the model development. The
statistical characterstics of various QSPR models obtained
are as follows: MLR (n ) 1230, R2 ) 0.913, AAD ) 16.1),
PLS (n ) 1230, R2 ) 0.935, AAD ) 13.8), nonlinear
analysis (NLA) with linear descriptor reductions (n ) 1230,
R2 ) 0.972, AAD ) 8.6), NLA with sum of squared errors
for error propagation (n ) 1230, R2 ) 0.992, AAD ) 4.5),
and NLA with GA based on WMSE (weighted mean square
error) (n ) 1230, R2 ) 0.995, AAD ) 3.7). The resultant
nonlinear QSPR models are capable of giving excellent
predictions of the critical temperatures of diverse compounds
(see Figure 9).

4.11. Critical Pressures
The critical pressure of a substance is the pressure required

to liquefy a gas at its critical temperature. Critical temperature
and pressure values are of great importance in chemical
engineering for the calculation of the equation of state of
thermodynamic and transport properties used in high-pressure
phase equilibrium processes, such as oil recovery and
supercritical fluid extraction.348 However, the experimental
determination of critical pressure is expensive and time-
consuming, often involving uncertainty due to the impurities
and/or decomposition. Consequently, many different ap-
proaches have been made to calculate critical property values
(see ref 347), and several QSPR models have also been
reported for the correlation and prediction of critical proper-
ties based on experimental measurements. However, most
of the QSPR models use molecular descriptors calculated
from structure and focus on a homologues series of
hydrocarbons.159,175,245,336,338,343-345

Jurs and co-workers333 obtained QSPR models for critical
pressure ranging from 12 to 55 atm for 165 diverse organic
compounds taken from the Design Institute for Physical
Property (DIPPR) database using molecular descriptors
calculated by ADAPT. An eight-descriptor MLR model was
obtained with R2 ) 0.929 and rms error ) 2.0 atm for 147
training set compounds and a rms error of 2.8 atm for 18
prediction set compounds. The authors found that the
majority of errors in their model were in the prediction of
compounds with high critical pressures. They also developed
an 8-5-1 CNN model which gave rms errors of 1.51, 1.35,
and 2.39 atm for 132 training set, 15 cross-validation set,
and 18 prediction set compounds, respectively.

Duchowicz and Castro340 applied simple constitutional
descriptors, derived from atoms and classical bonds, as basic
variables to predict the critical pressures of the Jurs set of
164 diverse compounds.333 The authors obtained R2 ranging
from 0.8015 to 0.8941 through C1-C4 calculation schemes.
The same descriptors were also implemented in the prediction
of critical property values of 43 normal and 9 branched
alkanes with R2 ) 0.99.341

Espinosa et al.192 investigated the applicability of fuzzy
ARTMAP QSPR models to estimate the critical pressures
of 463 diverse compounds ranging from 8.95 to 1.02 MPa.
Their fuzzy ARTMAP models with eight descriptors as input
(sum of atomic numbers, five valence connectivity indices,
second order kappa shape index, and dipole moment) showed
the best predictive (absolute mean errors of 0.02 MPa) and
extrapolation capabilities compared to optimal back-propaga-
tion models and group contribution methods (see Figure 10a).
However, the inclusion of the dipole moment in the model
showed a significantly smaller effect on the critical properties.

In a recent paper, Sola et al.349 obtained a QSPR model
for the critical pressures of a set of 121 diverse compounds
taken from the DECHEMA database based on CODESSA
PRO methodologies. Their final eight-descriptor QSPR
model showed a significantly higher accuracy (R2 ) 0.9209)
with respect to the best available group-contribution method.
Comparable results were also obtained with respect to other

Figure 10. (a) Comparison of the relative errors of the critical
pressures from the fuzzy ARTMAP model with 8-10-1 back-
propagation architecture for the complete data set. Reprinted with
permission from ref 192. Copyright 2001 American Chemical
Society. (b) Comparison of experimental and predicted PC obtained
from the nonlinear BPNN model based on weighted mean square
errors (WMSE). Reprinted with permission from ref 347. Copyright
2007 Elsevier B. V. (c) Schematic structure of micelle structure in
aqueous solution.
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QSPR models333 despite the different composition of the
database, confirming the versatility and robustness of the
QSPR method.

Godavarthy et al.347 obtained QSPR models for the critical
pressures of a large data set of 1230 diverse organic
compounds with an average absolute percent deviation
(%AAD) of 1.5 based on molecular descriptors calculated
by using CODESSA PRO. The authors347 compared their
model with those previously reported in the literature. The
various linear and nonlinear QSPR models obtained showed
good statistical characteristics for MLR (n ) 1230, R2 )
0.951, AAD ) 1.24), PLS (n ) 1230, R2 ) 0.971, AAD )
0.95), nonlinear analysis (NLA) with linear descriptor
reductions (n ) 1230, R2 ) 0.984, AAD ) 0.76), NLA with
SSE (n ) 1230, R2 ) 0.991, AAD ) 0.52), and NLA with
GA based on WMSE (weighted mean square error) (n )
1230, R2 ) 0.992, AAD ) 0.49). The nonlinear QSPR
models show promising results in predicting the critical
temperatures of a diverse set of compounds (see Figure 10b)
compared to previously published results. Some important
QSPR models developed for the critical pressure together
with the statistical parameters are summarized in Table 2.

4.12. Heats of Vaporization
The heat of vaporization, ∆HV, is the energy required to

transform a given quantity of a substance into a gas. Heat
of vaporization is thus the energy required to overcome the
intermolecular interactions in a liquid or solid, and it
measures the strength of intermolecular forces. Practical
applications of heats of vaporization include the understand-
ing of distillation and vapor pressure. Distillation is ubiq-
uitous for the separation and purification of compounds. The
heat of vaporization is the fundamental quantity that deter-
mines the experimental conditions at which an industrial or
laboratory-scale distillation should be run. The heat of
vaporization of a liquid allows the calculation of vapor
pressure at any temperature and permits the control of vapor
pressure by setting the temperature of the liquid being
vaporized, hence being an important tool.

Estimation of enthalpies of vaporization, ∆HV, has been
the subject of numerous papers. However, ∆HV values
depend not only on the molecular weight and composition
of substances but also on their structure. The corresponding

technique for additive calculations has been developed in
detail and gives good results for hydrocarbons. For com-
pounds containing heteroatoms, however, it is less developed
and significant deviations from experimental data are found.
An additivity calculation of ∆HV for 295 diverse n-alkenyl
compounds351 was reported based on the ECN (effective
carbon number) characterizing the functional group, the
number of carbon atoms, and the position of the double bond.
Their model explained 99.8% of the variance in the data,
with the mean absolute deviation of 0.5%. An additive
calculation of ∆HV at 298.15 K for a large set of isomeric
ketones C5-C15 was carried out by Emel’yanenko and
Roganov.352 One of the probable causes of the poor correla-
tion is the lack of sufficiently diverse sets of reliable data
on ∆HV. Makitra and Polyuzhin353 correlated ∆HV of a series
of isomeric ketones C5-C9 with the Hammet-Taft equation.
Several two-parameter (σ* and Es) regression equations were
obtained for different sets of ketones with good correlation
(R2 > 0.80). The U.S. EPA group estimated heats of
vaporization of a large number of compounds from the EPA
database based on the SPARC physical process calculator
method354 with a rms error of the predicted values close to
the intralaboratory experimental errors. A 3D QSPR model
was developed by Puri et al.355 for the correlation of ∆HV

of a set of polychlorinated biphenyls (PCBs) at 298.15 K
with CoMFA (comparative molecular field analysis)356a based
physicochemical parameters. Their model yielded R2 ) 0.996
and R2

CV ) 0.852 with the atom fit alignment and
Gasteiger-Marsili charges, which were used for the predic-
tion of the entire set of 209 PCB congeners.

Predictive QSPR models correlating experimental solubil-
ity parameters and enthalpies of vaporization have been
derived from QM calculated descriptors.356b A four-descriptor
Hildebrand total solubility parameter regression equation was
developed with R2 ) 0.97, R2

cv ) 0.97, F ) 461.5, s2 )
0.53, and root mean square error (RMSE) ) 0.69. A four-
descriptor QSPR model for the prediction of enthalpies of
vaporization (∆Hvap) had R2 ) 0.96, R2

cv ) 0.96, F ) 230.3,
s2 ) 4.75, and RMSE ) 2.04.

Several 2D structural descriptors have been developed
time to time by numerous authors. In 1947 Wiener8

calculated ∆HV of linear and branched chain hydrocarbons
by using structural parameters, such as the path number, w,

Table 2. Summary of the QSPR Models of Critical Pressures

type of compd N molecular descriptors (nd) QSPR method R2 s ref

normal alkanes 43 carbon number and its functional power (3) MLR 0.9889 0.0179 Krenkel et al.341

branched alkanes 41 carbon number and its functional power (10) MLR 0.9942 0.0007 Krenkel et al.341

alkanes (C1-C20) 60 topological parameters (5) MLR 0.9970 0.0771 Cao et al.245

diverse compounds 463 atomic numbers, valence connectivity, kappa shape
index, dipole moment (8)

fuzzy ARTMAP
neural network

0.08 Espinosa et al.192

diverse compounds 463 N, �(0-4), k2 (7) fuzzy ARTMAP
neural network

0.09 Espinosa et al.192

diverse compounds 463 N, µ, �(0-4), k2 (8) backpropagation
ANN
(8-10-1)

0.39 Espinosa et al.192

diverse compounds 132 topological, electronic, geometrical (8) MLR 0.9293 2.03 (atm) Turner et al.333

diverse compounds 132 topological, electronic, geometrical (8) feed forward
ANN (8-5-1)

1.51 (atm) Turner et al.333

alkanes 74 topological indices (5) MLR 0.9769 0.655 (atm) Lučić et al.338

alkanes 82 topological indices (2) MLR 0.9130 Ni et al.345

hydrocarbons 129 topological indices (4) MLR 0.9712 0.188 MPa Yuan et al.350

alkanes 74 topological indices (2) MLR 0.9131 1.25 Shamispur et al.344

alkanes 74 topological indices (5) PCR 0.9760 0.67 Shamispur et al.344

alkanes 74 connectivity indices (5) MLR 0.9810 0.60 Needham et al.159

alkanes 74 orthogonalized descriptors (7) 0.8845 Klein et al.175

alkanes 38 topological indices (5) MLR 0.9905 0.40 Bonchev336
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and the polarity number, p, calculated solely from chemical
structure. Needham et al.159 in their study reported the
correlation equation for the prediction of heats of vaporiza-
tion of 69 normal and branched chain alkanes with an R2 )
0.99 based on structural parameters. Numerous QSPR
correlations have appeared in the literature for the prediction
of ∆HV of a homologous series of compounds, mostly
hydrocarbons, by the use of molecular descriptors calculated
from structure.174,175,357,358 Some QSPR models developed for
∆HV are summarized in Table 3.

4.13. Heats of Formation
The heat (or enthalpy) of formation (∆H°f) is a funda-

mental thermodynamic property for predicting the chemical
characteristics of compounds. Thus, heats of formation are
important in the investigation of bond energies, resonance
energies, the nature of chemical bonds, the calculation of
equilibrium constants of reactions, etc.367 Considerable effort
has been directed toward the determination of the ∆H°f in
the past.368-370 Various estimation methods for the calculation
of the ∆H°f are introduced based on isodesmic and ho-
modesmic reactions atom group equivalents, transferability
and additivity of Fock matrix elements, etc.371-379 Chen and
co-workers380 applied first-principles methods, density func-
tional theory (DFT),381-383 and Hartree-Fock (HF) to
calculate ∆H°f of 180 organic molecules which showed large
deviations. Duan et al.384 implemented an ANN approach
based on the descriptors obtained from natural bond orbital
analysis, and an enlarged training set of 350 diverse
compounds showed improved results as compared to the
earlier calculation methods.380-383 Upon ANN correction, the
rms deviations for the 350 molecules were reduced from 11.2
to 4.4 and from 15.2 to 3.5 kcal/mol for B3LYP/6-31G(d)
and B3LYP/6-311G(2d,d,p) methods, respectively. At the
same time, the calculated ∆H°f of the HF method improved
greatly, and the rms deviations were reduced from 327.1 to
9.5 kcal/mol for the HF/6-31G(d) method.

Heats of formation were correlated with topological,
quantum chemical, and various other descriptors calculated
solely from structure, most successfully (R2 ) 0.99) for

homologues series of alkanes. Various quantum chemical
descriptors such as ionization potential (I), electron affinity
(A), quantum chemical hardness index (η), softness index
(S), electronegativity (�), and electrophilicity (ω) correlated
with ∆H°f of a set of 39 C2-C8 alkanes.385 The correlation
of the ∆H°f of alkanes with the indices I, η, and S showed
a good linear fit with (R2 ) 0.9274, s ) 2.2), (R2 ) 0.893,
s ) 2.7), and (R2 ) 0.893, s ) 2.7), respectively.

Correlations of ∆H°f with TIs based on overall Wiener
indices336 and the molecular electronegative distance vector
(MEDV)326 showed correlations (n ) 38, R2 ) 0.9984, s )
1.33) and (n ) 54, R2 ) 0.9920, rms ) 2.58) for a set of
alkanes, respectively. TIs derived from the distance and
detour (maximum distance) matrix were applied to correlate
the ∆H°f of a set of 60 hydrocarbons.386 The authors obtained
regression models with two sets of five parameters which
showed low average absolute deviations of 0.76 and 0.62
kcal/mol, respectively, as compared to the degree of uncer-
tainty in the experimental determination around 2 kcal/mol.
Also, TIs derived from the adjacency matrix were used in
the correlation of polyhex polycyclic aromatic hydrocar-
bons.387 G Gallegos and Girones388 developed novel topo-
logical quantum similarity indices based on fitted densities
from the atomic shell approximation procedure and used in
the correlation of the ∆H°f of alkanes. Their four-descriptor
MLR model showed the best predictivity results (R2 ) 0.990
and q2) 0.988) for ∆H°f of 60 hydrocarbons. Topological
indices derived by optimization of correlation weights of
local graph invariants (OCWLGI) based on labeled hydrogen-
filled graphs (LHFGs) and the graphs of atomic orbitals
(GAOs) were applied for the correlation of the ∆H°f for a
set of alkanes.253 Their QSPR model showed better results
with 0XCW (GAO, EC1): R2 ) 0.9984, s ) 1.804 for 66
training set compounds, and R2 ) 0.9803, s ) 1.791 for 67
test set compounds compared to the previously reported
results.389 Distance connectivity based topological indices (Sh
indices)344 were correlated with ∆H°f of 54 alkanes and gave
R2 ) 0.906 and s ) 9.08, and the bivariate regression with
Sh1 (first order Sh index) and n (number of carbon atoms)
improved the correlation with R2 ) 0.9711, s ) 5.07. The

Table 3. Summary of the QSPR Models on Heats of Vaporization (∆HV)

no. type of compd N molecular descriptors QSPR methods R2 s ref

1 alkanes 134 structural descriptors based
on information theory

MLR 0.9896 0.63 Ivanciuc et al.359

2 C3 to C8 alkanes 38 TIs (overall Wiener
indices)

MLR 0.9950 0.67 Bonchev336

3 organofluorine compounds 9 fragment descriptors MLR 0.9628 rms ) 0.128 Golovanov et al.360

4 alkanes 134 TIs based on reverse
Wiener matrices

MLR 0.9777 0.65 Ivanciuc et al.361

5 C2-C9 alkanes 68 atom-type topological
indices

MLR >0.9900 0.34 Ren362

6 alkanes 69 TIs based on adjacency
matrix

MLR 0.9980 0.34 Ponce342

7 alkanes TIs based on distance
complement matrix

MLR Ivanciuc et al.363

8 alkanes, alcohols, polyols, ethers 32 descriptors based on
molecular mechanics and
quantum chemical
calculations

MLR 0.9817 0.311 (kcal/mol) Dyekjaer et al.364

9 alkanes 57 topological indices MLR 0.9934 0.66 (kJ/mol) Cao et al.245

10 hydrocarbons 159 topological indices MLR 0.9910 1.34 (kJ/mol) Yuan et al.350

11 C4 to C12 aliphatic ketones 39 electrotopological indices MLR Marino et al.365

12 alkanes 69 topological indices PCA 0.9921 0.50 Shamsipur et al.344

13 alkylbenzenes 47 topological indices SVR rms ) 0.699 Yang et al.342

14 saturated hydrocarbons 66 fragment based topological
descriptors

MLR 0.9878 σ ) 0.942 (kcal/mol) Tsygankova et al.366
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use of principal component variables in the QSPR model
also showed improved results with R2 ) 0.9873 and s )
3.51.

Few articles report the QSPR correlations of the ∆H°f of
diverse sets. The heats of formation of a set of nonaromatic
polynitro compounds were correlated with physicochemical
and topological descriptors based on the QSPR approach.390

QSPR models were obtained for ∆H°f for a set of diverse
functional acyclic compounds based on molecular connectiv-
ity indices (MCI), molecular negentropy (MN), and to-
pochemically arrived unique (TAU) indices.391 TAU indices
developed in a VEM (valence electron mobile) environment
showed better results for ∆H°f of a set of 21 alcohols and
67 alkanes. The QSPR models of ∆H°f for a set of 21
alcohols, 67 alkanes, and the combined set of alkanes and
alcohols showed promising statistical results with (R2 )
0.982, s ) 1.471), (R2 ) 0.992, s ) 1.083), and (R2 ) 0.943,
s ) 3.520), respectively, using TAU indices rather than MCI
and MN indices. TAU indices unravel specific contributions
of molecular bulk (size), functionality, branchedness, and
shape parameters to the molecular thermochemical properties
of diverse functional compounds. Some important QSPR
models are summarized in Table 4.

4.14. Entropies
Entropy measures thermal energy per unit temperature of

a system unavailable for doing useful work. The standard
entropy is a highly important thermodynamic parameter of
a substance used in physicochemical processes. In some
cases, the measurement of this property involves experi-
mental difficulties and the standard methods have substantial
restrictions.393,394 Previously, the molecular group contribu-
tion approach395,396 and quantum chemical methods397 were

used to estimate entropy. These methods showed large
absolute errors. Consequently, QSPR models were made
based on the availability of experimentally measured data
to be able to predict entropy values. Kuanar et al.358

correlated the entropy values of 18 octane isomers with line
graph parameters derived from molecular structure and
obtained a single-parameter equation with R2 ) 0.919.
Topological indices derived on the basis of optimized
correlation weights of linear graph invariants were used for
the prediction of entropy values of 40 acyclic and aromatic
compounds.398 The authors obtained a MLR model with R2

) 0.973 and s ) 2.36. Golovanov et al. used a simple
approach based on a mathematical equation using only the
number of C atoms in the alkyl radical, n, as the molecular
descriptor for the calculation of entropy values as well as
numerous other properties of a set of alcohols392 and an
improved model using 10 parameters for 117 saturated
hydrocarbons,399 giving highly accurate estimates for various
properties.

Total entropies of melting for 370 pharmaceuticals and
environmentally relevant compounds were predicted using
two descriptors: molecular rotational symmetry number and
molecular flexibility number with an average error of 21%.400

In combination with the two descriptors mentioned, Johnson
and Yalkowsky401 used two novel structural parameters,
eccentricity (ε) and spirality (µ), for the prediction of entropy
of melting (∆Sm) and obtained a regression equation with
R2 ) 0.90 for a set of 117 aliphatic and aromatic hydrocar-
bons. Eccentricity was defined as the ratio of the volume of
a box around a rigid molecule to the cubed radius of a sphere
containing the same molecular van der Waals volume.
Spirality was defined as the number of benzo[c]phenanthrene

Table 4. Summary of the QSPR Models of Heats of Formation (∆H°f)

type of compd N molecular descriptors
QSPR

methods R2 s Reference

alkanes 46 graph theoretical
descriptors

MLR 0.990 1.215 Garbalena et al.357

octanes 18 graph theoretical
descriptors

MLR 0.936 Kuanar et al.358

alkanes 54 TIs based on molecular
electronegative distance
vector

MLR 0.992 rms ) 2.58 Liu et al.326

alkanes 39 quantum chemical
descriptors (ionization
potential)

MLR 0.927 2.2 Thanikaivelan et al.385

aliphatic alcohols 20 fragment descriptors MLR 0.993 6.227 Golovanov et al.392

alkanes 60 TIs based on distance and
detour matrix

0.999 1.11 Mercader et al.386,387

0.999 0.93
alkanes 38 TIs based on overall

Wiener indices
MLR 0.9984 1.33 Bonchev336

aliphatic ketones 39 electrotopological indices MLR 0.99 (n ) 22, train) 5.11 Marino et al.365

alkanes 133 TI derived from OCWLGI
based on graphs of
atomic orbitals (GAOs)

MLR 0.998 (n ) 66, train) 1.804 (train) Toropov et al.253

0.980 (n ) 67, test) 1.79 (test)
alcohols and alkanes 88 topological indices (tau

indices)
MLR 0.943 3.52 Roy et al.391

alkanes 54 distance-connectivity based
topological indices

PCR 0.987 3.51 Shamsipur et al.344

alkanes 60 topological quantum
similarity indices

MLR 0.999 Gallegos et al.388

nonaromatic polynitro
compounds

physicochemical and
topological indices

MLR Sukhachev et al.390

diverse compounds 350 descriptors based on
natural bond orbital
analysis

HF/6-31G (d),
ANN

rms ) 9.5 kcal/mol Duan et al.384

5740 Chemical Reviews, 2010, Vol. 110, No. 10 Katritzky et al.



regions present in the molecule which results in repulsion
and out of plane twisting to maximize the distance between
hydrogens.

4.15. Rotational Activation Energies for Amides
Prediction of rotational barriers about the amide bond has

been of substantial interest, particularly in relation to the
conformational studies of peptides and polyamides. Semiem-
pirical quantum-chemical methods402,403 were used for the
prediction of potential energy surfaces of amide bond rotation
which underestimate the experimental activation energies.
Ab initio calculations were made by Wiberg et al.,404 and
although values were closer to experimental, the calculations
were very time-consuming and hence impractical for larger
systems.

The main deficiency of the semiempirical calculations has
been related to the inaccurate presentation of the lone pair
interactions in the compounds containing nitrogen.405 Con-
sequently, the errors made in calculations of both the energy
of the ground state and the energy of the rotational transition
state result in unpredictable errors in activation energy.
Moreover, the attempts to correlate the experimental free
energies of activation with the calculated activation energies
of rotation follow the assumption that the entropy change
during the rotation is small and nearly equal for all amides.
The applicability of such an assumption in the case of more
variable structures is, however, questionable. For instance,
the experimental activation entropy for various N,N-dialky-
lamides ranges between -3.7 and 1.5 cal K-1 mol-1 in the
gas phase.406,407 The variation of this activation entropy is
even more substantial in the liquid phase.407 Another source
of errors leading to poor correlation between the quantum-
chemically calculated activation energies and the respective
experimental values emerges from the variation in experi-
mental conditions (e.g., in media, concentration, or temper-
ature) and the precision of measurements. Nevertheless, for
a series of similar (homologous) compounds, the AM1
calculated activation energies were successfully correlated
with the respective experimental conformational transition
energies.408

In general, the origin of the rotational barrier about the
N-C(O) bond in amides is related to the decoupling of
mesomeric interaction within the amide group in the
rotational transition state. Thus, the respective rotational
activation energy should depend on the magnitude of the
resonance stabilization in the planar rotational ground state.
On the other hand, the ab initio investigations by Wiberg et
al409,410 and Bader et al.411 revealed that the internal rotational
barriers of isolated molecules can be described by the change
in the attractive and repulsive interactions during the rotation.
It has also been found that the respective energy changes
are in good accord with the model considering the rehybrid-
ization of the nitrogen atom during the N-C(O) bond
rotation. This rehybridization model confirms the view that
the main difference in rotational barriers of different amides
is caused by the different extent of nitrogen hybridization
in the rotational ground state, whereas it is similar (i.e., sp3-
hybridized) in the transition state.

Leis and Karelson412 first reported QSPR models of
rotational barriers using general theoretical molecular de-
scriptors and the relatively simple application of such
descriptors is quite attractive for this purpose. A three-
parameter QSPR model (eq 11) was obtained with R2 )
0.982 for the free energies of activation for the amide bond

rotation for a set of 24 N,N-dialkylamides using the
CODESSA program.

The three parameters used in eq 11 are maximum Coulombic
interaction for a C-H bond (ECH,max), minimum atomic state
energy for a C-atom (EC,min), and charged surface area of
hydrogen acceptor atoms (HACA2). It was shown that the
gas-phase rotational barriers are primarily determined by the
electronic properties of molecules in the rotational ground
state. The proposed model is suggested as an alternative to
the commonly used potential energy surface (PES) calcula-
tions for the quantitative prediction of amide bond rotation
barriers.

5. Complex Physical Properties Involving
Interactions between Different Molecules

5.1. Solubilities
Solubility is defined as the amount of solute dissolved in

a saturated solution under equilibrium conditions. It is an
important molecular property, which plays a large role in
the behavior of compounds and is of interest in diverse areas
of pharmaceutical, material, physical, and environmental
research. In particular, in the design of drugs, it is essential
to consider aqueous solubility, which strongly influences
pharmacokinetic properties such as absorption, distribution,
metabolism, and excretion. Also, knowledge of solubilities
is required for the prediction of the environmental fate of
pollutants, soil adsorption coefficients, bioconcentration
factors for nonionic pesticides, and the suitability of gaseous
anesthetics, blood substitutes, and oxygen carriers.413,414

Significant effort has been invested in the prediction of
the solubility of small organic compounds and environmen-
tally important chemicals. There is a large amount of
experimental solubility data available for small organic
compounds, but only limited data are available for drugs and
druglike compounds. The experimental conditions of the
measurements, such as pH and temperature, affect the
solubility of a compound. Thus, differences in experimental
conditions and protocols lead to variations between labora-
tories in the measurement of solubility. The accuracy of the
QSPR models based on available experimental solubility data
is limited by the accuracy of the experimental measurements.

5.1.1. Solubility of Liquids and Solids

Yalkowsky and Banerjee have summarized the various
methods used to develop solubility models.196 The methods
may be classified into three categories: (i) correlations with
experimentally determined physicochemical properties such
as partition coefficients, chromatographic retention time,
melting point, boiling point, molar volume (derived from
liquid density), or parachor (derived from density and surface
tension); (ii) group contribution models, which are based on
compilations of relevant structural features of the molecules;
(iii) correlations with the parameters calculated only from
molecular structure, such as molecular volume, and topologi-
cal indices. Yalkowsky and Valvani415,416 proposed the
general solubility equation (GSE), which uses only two
parameters, the octanol-water partition coefficient and
melting point. Jain and Yalkowsky417 revised the GSE based

∆Gqgas ) (12.13 ( 0.44)ECH,max - (1.75 ( 0.11)EC,min +
(2.19 ( 0.32)HACA2 + (146.19 ( 9.96) (11)
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on complete miscibility as X0 ) 0.50. The revised GSE has
been applied on diverse data sets and was found to provide
a more accurate estimation of the aqueous solubility of the
same set of data than the original GSE.198,418 Meylan et al.197

expanded this method to include molecular weight (MW).
The approaches based on experimental properties are only
suitable for compounds for which the measured values are
available, and they are not applicable for compounds not
yet synthesized or isolated. The group contribution method
requires numerous parameters (up to 200) to achieve a good
predictive model.419-421 A model, developed for the predic-
tion of solubility based on the fragmentation method,
included the experimental melting point as a term to account
for the entropy of fusion of solids.422 Ruelle and Kesselring
applied the mobile order thermodynamics method to com-
pounds with no hydrogen bond donor capacity.423 The group
contribution method is unsuitable for the prediction of the
solubility of compounds unless neighboring groups and
conformation are taken into consideration. Hence, the QSPR
models developed using calculated molecular descriptors are
more reliable for prediction of solubility, and numerous linear
and nonlinear models have been developed. Several reviews
have been published about the prediction of solubility based
on QSPR equations by using MLR, PLS, and ANN
approaches.316,424,425 We have listed in Table 5 some of the
QSPR models developed for the prediction of solubility using
calculated molecular descriptors.

Katritzky et al.451 reported a QSPR prediction of free
energies of solvation of single solutes in a series of solvents
and specified solutes in ranges of solvents.452 They developed
69 QSPR equations for various solvents in a series of solutes
based on the molecular descriptors calculated from structure
using CODESSA PRO.451 The models showed the R2 and s
ranging from 0.837 and 0.32 for 2-pyrrolidone to 0.998 and
0.14 for di-n-propyl ether, respectively.451 Subsequently, the
authors correlated the free energies of solvation of 80 organic
solutes in a range of 15 to 82 solvents with molecular
descriptors calculated by CODESSA PRO.452 In another
study, the same authors reported the intrinsic characteristics
of the solute-solvent interactions based on a solubility
database of 4540 compounds.453 These studies were comple-
mented by developing QSPR models describing the solubility
of PAHs and fullerene (C60) in two different condensed
media: 1-octanol and n-heptane.454 Statistically good QSPR
models were obtained by using forward selection techniques
from a large group of theoretical molecular descriptors.

Recently, the structural similarity method was applied by
Schüürmann and co-workers455 to the water solubility of a
data set of 1876 organic compounds. The similarity analysis
was carried out on atom-centered fragments (ACFs) in accord
with a k nearest neighbor procedure in 2D-structural space.
In another recent study, the implementation of a data
visualization technique assisted in the extraction of meaning-
ful information from a large scale solubility database, which
established that C log P and the molecular weight were
critical factors in determining aqueous solubility.456

Water solubility of PAHs was modeled by Lu et al.457

using quantum chemical descriptors computed at the B3LYP/
6-31G(d) level, and PLS. Two optimized models with high
correlation coefficients (R2 ) 0.966 and 0.970) were obtained
for estimating the logarithmic mass and molar concentration
of water solubility, respectively. The PLS analysis indicated
that PAHs with larger electronic spatial extent and lower
total energy values tend to be less soluble.

Recently, aqueous solubility has been modeled using the
scores of extended connectivity fingerprint as molecular
descriptors on a data set of 1302 compounds;458 solubility
of fullerene C60 in organic solvents has been modeled using
multiplicative SMILES-based optimal descriptors;459 and
solubility of 29 anthraquinone, anthrone, and xanthone
derivatives in supercritical carbon dioxide (SCF-CO2) was
modeled using structure based molecular descriptors via
linear and nonlinear methods.460

Solubility is a key physicochemical factor in drug devel-
opment. Accordingly, reliable models for prediction of
druglike compounds are urgently needed, and specifically
oriented studies have emerged. Duchowicz et al.461 have
developed a generally applicable linear QSPR based on 147
druglike compounds containing three molecular descriptors.
Kim et al.462 have correlated the water solubility of poorly
soluble drugs, such as ursodeoxycholic acid, diphenyl
hydrantoin, and dimethyl biphenyldicarboxylate. Three data
sets of 50 compounds were extracted from the literature data
according to their structural similarity with each drug. Fast
and predictive QSPR models (R2 > 0.90) were developed
and validated (R2 > 0.85). Huuskonen et al.463 extracted a
training set of 191 druglike compounds from the AQUASOL
database to correlate aqueous solubility by a model of five
parameters (C log P, molecular weight, indicator variable
for aliphatic amine groups, number of rotatable bonds, and
number of aromatic rings) with statistics of R2 ) 0.87 and
s ) 0.51. The model was applied to a test set of 174 druglike
compounds with R2 ) 0.80 and s ) 0.68. The results of this
study suggest that increasing molecular size, rigidity, and
lipophilicity decrease solubility whereas increasing confor-
mational flexibility and the presence of a nonconjugated
amine group increase the solubility of druglike compounds.
Du-Cuny et al.464 aimed at modeling the aqueous solubility
of druglike compounds in congeneric series. Lipophilicity
(C log P) combined with structural fragment information,
fragmental based correction factors, and congeneric series
indices were used as descriptors for a PCA followed by
multivariate PLS regression. The resulting general model (R2

) 0.84 and rms ) 0.51) was based on an in-house data set
of 1515 druglike compounds, and solubility of the test set
of 958 compounds was predicted with a high degree of
accuracy, R2 ) 0.81 and s ) 0.42. In the course of model
development, rules were derived which can be used by
medicinal chemists or interested scientists as a rough
guideline on the contribution of structural fragments to
solubility.

5.1.2. Aqueous Solubility of Gases and Vapors

Due to the technical difficulties with accurate analytical
determination of the solubility of gases and vapors, compu-
tational methods for their prediction are of great practical
importance. The solubility of gases and vapors is denoted
as L and is known as the Ostwald solubility coefficient. It is
defined as the ratio of the concentration of a compound in a
solution and in the gas phase at equilibrium. Another
commonly used equilibrium parameter is the Henry’s law
constant (H), which is essentially an air-water partition
coefficient (Lw

-1). Water-air partition coefficients can be
estimated from the vapor pressure (VP) and aqueous solubil-
ity (Sw) of a compound.465-467 Hine and Mookerjee reported
the first empirically based group and bond contribution
schemes468 and estimated the solubilities of 292 compounds
with a standard error of 0.12 log units based on 69 empirical
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Table 5. List of Some QSPR Models of Aqueous Solubility (log S)

no. compd N descriptors approach model statistics Ref

1 alky-halo-substituted
aromatics

38 1�V and φ MLR R2 ) 0.922, s ) 0.200 Nirmalakhandan and Speece426

alcohols 50 1�, 1�V, and 3�P
V MLR R2 ) 0.961, s ) 0.110

alky-halo-substituted
alkanes/alkenes/
aromatics and
alcohols

145 0�, 0�V, and φ MLR R2 ) 0.926, s ) 0.318

2 miscellaneous
compounds such as
PCBs, PNAs,
PCDDs, phenols, etc.

470 0�, 0�V, and φ MLR R2 ) 0.980, s ) 0.332 Nirmalakhandan and Speece427

3 miscellaneous
compounds

123 NO, NC, WTPT1,
WRPT2, QSUM,
SAAA1, SAAA2,
FNSA3, GEOH

MLR R2 ) 0.998, s ) 0.227 Sutter and Jurs428

miscellaneous
compounds

123 NO, NC, WTPT1,
WRPT2, QSUM,
SAAA1, SAAA2,
FNSA3, GEOH

CNN(9:3:1) s ) 0.217 (test)

s ) 0.282 (cv, n ) 11)
4 miscellaneous

compounds
295 SHDW2, SHDW5,

MOLC3, PPSA1,
DPSA3, WNSA1,
SAAA3, CHAA2,
EHBB

MLR R2 ) 0.931, s ) 0.638 Mitchell and Jurs429

265 (trn) SHDW3, GRAV3,
ALLP3, WTPT4,
2SP3, QNEG,
PPSA1, FPSA3,
WPSA3

CNN(9:6:1) s ) 0.394 (test)

s ) 0.358 (cv)
5 hydrocarbons and

halogenated
hydrocarbons

241 MV, 0BIC, PNSA MLR R2 ) 0.959 Hubiers and Katritzky430

6 diverse compounds 411 Qmin, Nel, FHDSA2,
ABO(N), 0SIC,
RNCS

MLR R2 ) 0.879, s ) 0.573 Katritzky et al.312

7 drugs 160 topological (9), atom
type
electrotopological
indices (24)

ANN(23-5-1) R2 ) 0.90, s ) 0.46 Huuskonen et al.431

50 R2 ) 0.86, s ) 0.53
8 drug/organic 884 topological (6), E-state

indices (24)
MLR R2 ) 0.89, s ) 0.67 Huuskonen432

413 MLR R2 ) 0.88, s ) 0.71
884 ANN(30-12-1) R2 ) 0.94, s ) 0.47
413 ANN(30-12-1) R2 ) 0.92, s ) 0.60

9 organic compounds 150 molecular descriptors,
Monte Carlo
simulations (5)

MLR R2 ) 0.88, s ) 0.72 Jorgensen and Duffy433

10 diverse compounds 500 descriptors calcd using
PM3 and topological

FUZZY ARTMAP s ) 0.14 (validn) (s )
0.28 validn for
11-13-1 BNN)

Yaffe434

11 drug/organic 1038 (lit.) topological,
geometrical, charge

Bayesian ANN,
(ARD-automatic
relevance procedure)

R2 ) 0.95, rmse )
0.50

Bruneau
435

673 (test) rms ) 0.84
522 (Astra-Zeneca) R2 ) 0.64, rms ) 0.67
261 (test) rms ) 0.78

1560 (all) R2 ) 0.94, rms ) 0.53
934 (test) rms ) 0.81

12 drug/organic 1168 descriptors based on
fragment atom
scheme (118)

group contribution
method

R2 ) 0.95, s ) 0.50 Klopman and Zhu421

13 drug/organics 879 E-state indices (31) MLR R2 ) 0.86, s ) 0.75
(trn)

Tetko436

412 MLR R2 ) 0.85, s ) 0.81
(test)

879 ANN R2 ) 0.92, s ) 0.56
(trn)

ANN R2 ) 0.89, s ) 0.68
(test)

14 drug/organic 1033 1D, 2D descriptors ANN(7:2:1) R2 ) 0.86, s ) 0.70 Liu and So437

258 R2 ) 0.86, s ) 0.71
15 chlorinated

hydrocarbons
50 shadow XY, WNSA-3 MLR R2 ) 0.965, s ) 0.45 Delgado438

16 druglike compounds 930 2D and 3D descriptors
(24)

MLR R2 ) 0.92, rmse )
0.53

Gao et al.439

druglike compounds 249 MLR R2 ) 0.91, rmse )
0.49

17 drug/organic 150 (trn) quantum-chemical (3) MLR R2 ) 0.90, s ) 0.66 Klamt et al.440

pesticides 1078 (test) MLR s ) 0.61
18 drugs/organic 3042 topological, hydrogen

bonding, lipophilic,
1D- and
2D-descriptors (63)

ANN R2 ) 0.91, s ) 0.84
(trn)

Engkvost and Wrede441

309 R2 ) 0.89, s ) 0.87
(test)
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group contribution factors. Their bond contribution scheme
reproduced the solubilities of 263 solutes with a standard
error of 0.42 log units using 34 bond contributions. Another
scheme based on 28 group contributions developed by
Cabani et al.469 was implemented in the correlation of 209
log Lw values of diverse compounds and a standard error of
0.09 log units. However, due to the large number of fitted
parameters involved in these schemes, neither the group
contribution nor the bond contribution method conveys much
understanding of the physical nature of the relationship
between molecular structure and intermolecular interactions,
and hence, the solubility of gases in water. Moreover, the
solubilities of compounds containing structural functionality
not included in the training set were unsuitable for prediction.

Russell, Dixon, and Jurs correlated the logarithms of
Henry’s law constant, log H, of a small data set of 63 diverse
gases in water, using five theoretically calculated descrip-
tors.470 Their MLR model had a R2 of 0.956 and s ) 0.375

log units. Based on the model descriptors, the authors
suggested that the factors influencing the solubility of gases
in water were related to the solute bulk, lipophilicity, and
polarizability.

Abraham et al. correlated the solubility of 408 diverse
gases in water with five linear solvation energy relationship
(LSER) descriptors,466 including the excess molar refraction
(calculated from the experimental molar refraction), the
experimentally determined dipolarity/polarizability π2

H, the
effective hydrogen-bond acidity ∑R2

H and basicity ∑�2
H, and

the McGowan characteristic volume Vx (calculated from
some tabulated atomic increments). The model had a
correlation coefficient of 0.998, a standard deviation of 0.151
log unit, and an F-value of 16810. Although four of these
descriptors were determined experimentally, this correlation
equation can be interpreted term-by-term using well-
established chemical principles, which has been a motivation
to develop computational methods for obtaining the LSER

Table 5. Continued

no. compd N descriptors approach model statistics Ref

307 R2 ) 0.86, s ) 0.80
(test)

drugs 80 (test) 0�v, 3�ac
v, 3�c

v MLR R2 ) 0.91, s ) 0.769
19 small organic

molecules, drugs,
druglike species

775 (trn) A log P98,
HBD*HBA, HBD,
Rotlbonds, Wiener,
Zagreb’ S_aaaC,
S_sOH

GA/PLS R2 ) 0.84, rms ) 0.87 Cheng and Merz442

1665 (test) s ) 1.01
20 diverse organic

compounds
787 R, ΣCa, ΣCd, n(Cycl),

I(alk), I(CX3),
I(RCOOH), I
(Hbintra) log 1/fui

RA R2 ) 0.935, s ) 0.467 Schaper et al.443

569 R, ΣCa, ΣCd, log 1/fui RA R2 ) 0.89, s ) 0.49
21 aliphatics 50 weighted path numbers

based on van der
Waals volumes

MLR R2 ) 0.94, s ) 0.38 Nohair and Zakarya444

50 ANN(4-4-1) R2 ) 0.98, s ) 0.11
22 organic compounds 741 (trn) 18 descriptors:

topological, HBD,
HBA, indicator

MLR R2 ) 0.84, s ) 0.78 Yan and Gasteiger445

552 (test) MLR R2 ) 0.89, s ) 0.68
741 (trn) BPANN(18-10-1) R2 ) 0.92, s ) 0.51
552 (test) BPANN(18-10-1) R2 ) 0.94, s ) 0.52

23 drug/organic 797 (trn) RDF code 3D
descriptors (32)

MLR R2 ) 0.79, s ) 0.93 Yan and Gasteiger446

496 (test) MLR R2 ) 0.82, s ) 0.79
797 (trn) BPNN R2 ) 0.93, s ) 0.50
496 (test) BPNN R2 ) 0.92, s ) 0.59

24 alcohols log(1/S) 63 local graph invariants least square regression R2 ) 0.986, s ) 0.12 Duchowicz et al.447

25 aromatic compounds 3343 (trn) topological (47-67) ANN, PLS-GA,
MLR-GA

(R2 ) 0.88, mae )
0.51) (R2 ) 0.79,
mae ) 0.71) (R2 )
0.77, mae ) 0.75)

Votano et al.448

aromatic compounds 772 (test) (R2 ) 0.77, mae )
0.62) (R2 ) 0.72,
mae ) 0.78) (R2 )
0.72, mae ) 0.76)

nonaromatics 1674 (trn) topological (35-52) ANN, PLS-GA,
MLR-GA

(R2 ) 0.88, mae )
0.44) (R2 ) 0.79,
mae ) 0.61) (R2 )
0.76, mae ) 0.63)

166 (test) (R2 ) 0.84, mae )
0.56) (R2 ) 0.78,
mae ) 0.68) (R2 )
0.76, mae ) 0.66)

26 miscellaneous
compounds

930 (trn) (topological,
hydrophobicity,
partial charge,
polarizability) (22
MOE, 65 ISIS keys)

linear PLS (rmse ) 0.468) (R2 )
0.911, rmse ) 0.475)

Catana et al.449

177 (test)
800 (trn) 41 descriptors MLP (ANN) (R2 ) 0.897, rmse )

0.584) (R2 ) 0.846,
rmse ) 0.608)

177 (test)
800 (trn) 60 descriptors linear NN (R2 ) 0.93, rmse )

0.483) (R2 ) 0.903,
rmse ) 0.501)

177 (test)
27 PCDD/PCDFs and

phthalate ester
35 topological (CRI),

EHOMO, ELUMO, µ
MLR (R2 ) 0.97, s ) 0.347) Sacan et al.450

5744 Chemical Reviews, 2010, Vol. 110, No. 10 Katritzky et al.



descriptors in order to make a priori predictions. Absolv471

is an excellent example of such a tool that enables calculation
of solvation associated properties from Abraham-type equa-
tions and predicts calculation parameters necessary for those
calculations.

The partitioning of two sets of organic gases and vapors
between water and air (Lw) has been studied using the
CODESSA program.472 For the first set of 95 alkanes,
cycloalkanes, alkylarenes, and alkynes, excellent predictions
were obtained with a two-parameter correlation equation (R2

) 0.977, Rcv
2 ) 0.975, s ) 0.20). The two descriptors

involvedsthe gravitation index and the complementary
information contentsreflect the effective mass distribution
and the degree of branching of the hydrocarbon molecule,
and they adequately represent the effective dispersion and
cavity formation effects for the solvation of nonpolar solutes
in water. For the second set of 406 structurally diverse
organic compounds (including structures containing N, O,
S, and halogen atoms), a successful 5-parameter correlation
equation (R2 ) 0.941, Rcv

2 ) 0.939, s ) 0.53) was also
reported. The descriptors from this equation (which were
completely different from those for the set of 95 nonpolar
solutes) comprised the partial charge weighted normalized
hydrogen-bonding donor surface area, counts of oxygen and
nitrogen atoms, the HOMO-LUMO energy gap, the most
negative partial charge weighted topological electronic index,
and the number of rings. The descriptors account for the
dispersion energy of polar solutes in solution, the electrostatic
part of the solute-solvent interaction, and hydrogen-bonding
interactions in liquids. In a related study, water-air partition
coefficients were estimated from vapor pressure and aqueous
solubility values predicted by the QSPR models derived from
a set of 411 compounds.312 The mean standard error of the
predicted gas solubilities was found to be very similar to
the standard error of the Lw, predicted using the equation
derived directly from the experimental values of Lw

472. The
solubilities of 87 gases and vapors in methanol (R2 ) 0.945,
R2

cv) and 61 gases in ethanol (R2 ) 0.969, R2
cv ) 0.964)

have also been reported.473

5.1.3. Activity Coefficients at Infinite Dilution

The infinite dilution activity constant, γ∞, indicates how the
solvent medium differs from the pure solute, measuring the
interactions between solute and solvent in the absence of
solute-solute interactions. The γ∞ of aqueous solutions is
important in environmental engineering as well as in
industrial applications. Compared to solubility, the activity
constants depend weakly on the temperature and to a lesser
extent on the solute configuration. Several correlations
between structural features and γ∞ in aqueous solutions have
been reported. Pierotti et al.474 developed a scheme in which
log γ∞ is estimated from the contributions of individual
interactions between the solute and solvent structural groups.
The size of the structural groups was represented by the
carbon number, and the nature of the groups was incorporated
by the use of coefficients. Tsonopoulos and Prausnitz475

correlated the activity coefficients of 147 aromatic solutes
in dilute aqueous solutions with the number of carbon atoms
and the types of groups present in the aromatic compound.
The group contributions were found to be generally additive.
Mackay and Shiu476 correlated the hydrocarbon infinite
dilution coefficient with the carbon number using a parabolic
equation. Medir and Giralt477 correlated ln γ∞ for aliphatic
and aromatic hydrocarbons using molecular descriptors that

included the first-order molecular connectivity index, surface
area, dipole moment, number of carbon atoms, total elec-
tronic energy, and acentric factor. Tochigi et al.478 improved
the ASOG (analytical solution of groups)sa group contribu-
tion method confirmed by the prediction of 442 γ∞ values.
Hansen et al.479 revised the parameters of a group contribu-
tion method UNIFAC480 based on binary group interaction
parameters together with volume and surface area parameters
capable of calculating γ∞ in various solvents. Another
method, based on the modified separation of cohesive energy
density (MOSCED) model, for nonaqueous systems was
developed by Thomas et al.481 Using only pure component
parameters, the method produced results comparable with
the aforementioned approaches. According to Sherman et
al.,482 ASOG and UNIFAC cannot be extended to predict
γ∞ of aqueous solutions because of the strong nonidealities
compared to other solvents due to the water’s hydrogen-
bonding capabilities and the small size of the molecule.
Therefore, water exhibits large variation in γ∞ and needs an
individual approach. The authors evaluated data from dif-
ferent kinds of experiments and created a water database of
336 compounds at 298.15 K, and developed an LSER model
that fitted the data to within an average absolute deviation
of 0.294 ln unit.

Mitchell and Jurs483 developed QSPR models for the ln
γ∞ of 321 organic compounds (in the range of -2.41 for
dimethyl sulfoxide to 23.3 for 1-octadecanol) in aqueous
solutions with predictive ability within the range of the
experimental error of the measurements. The molecular
structures were represented by calculated topological, geo-
metric, and electronic descriptors at the PM3 and MNDO
levels of theory. Genetic algorithm (GA) and simulated
annealing (SA) routines were used to select subsets of 12
descriptors for the MLR and CNN models. The best model
was obtained combining the GA and the CNN stest ) 0.376
and spred ) 0.434 for the sets of 271 and 25 compounds,
respectively.

Rani and Dutt484 modeled γ∞ values of 19 halocarbons in
water and 18 organic compounds in five hydrofluoroparaffins
as solvents over a temperature range of 291- 333 K with
an ANN trained with 351 data points, with an average
absolute deviation of 11.8% on the basis of γ∞, compared
to 94.3% obtained by MLR. The input variables included in
the network were temperature, dipole moment, molar refrac-
tion, and critical pressure of the solute and solvent.

He and Zhong485 conducted a QSPR study on ln γ∞ for
organic compounds in water at 298.15 K. Correlations based
on 3...6 molecular connectivity indices were proposed for
hydrocarbons (n ) 105, R2 ) 0.968, s ) 0.478), oxygen
containing organic compounds (n ) 108, R2 ) 0.992, s )
0.339), and halogenated hydrocarbons (n ) 70, R2 ) 0.834,
s ) 0.773). Estrada et al.486 used quantum-connectivity
indices to model ln γ∞ of the same data for hydrocarbons
and oxygen containing compounds. Quantum-connectivity
indices are defined by using a combination of topological
invariants, such as interatomic connectivity, and quantum
chemical information, such as atomic charges and bond
orders. For 103 hydrocarbons, just two descriptors provided
a correlation with R2 ) 0.93, while a single descriptor (the
path bond-order-based bond connectivity index of order 1)
described the 108 oxygen containing compounds with R2 )
0.98.

Giralt et al.487 used self-organizing maps for the extraction
of relevant molecular features which were then used to
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identify 13 chemical classes and their characteristics within
a data set of 325 organic compounds. A fuzzy-ARTMAP
QSPR model with 11 topological and quantum-chemical
descriptors was reported. Average absolute errors of 0.02
(0.36%) and 0.52 (6.64%) ln γ∞ units were obtained for the
training (280 compounds) and test sets (45 compounds),
respectively.

Xu et al.488 performed geometrical optimization and
electrostatic potential calculations for a series of halogenated
hydrocarbons at the HF/Gen-6d level. A number of electro-
static potentials and statistically based structural descriptors
derived from these electrostatic potentials were obtained.
MLR analysis and ANN were employed simultaneously. The
results showed that the parameters derived from electrostatic
potentials, σ2tot, V(s), and ∑Vs(+), together with the
molecular volume (Vmc), could be used to express the QSPR
of γ∞ of halogenated hydrocarbons in water. Validation of
the model using an external test set demonstrated that the
model obtained by using the BFGS quasi-Newton NN
method had much better predictive ability than that from
MLR.

In recent years, room-temperature ionic liquids (ILs) that
are organic salts composed entirely of ions have gained great
importance as media for reactions and extraction due to their
unique physical properties. Particularly appealing is their low
vapor pressure, which makes them essentially nonvolatile.
Information on how solutes interact with these solvents is
crucial in assessing their usefulness. Eike et al.489 successfully
modeled infinite dilution activity coefficients (ln γi

∞ at 298
K) for 38 solutes in three ionic liquidss1-butyl-4-methylpy-
ridinium tetrafluoroborate ([bmpyr][BF4]), 1-methyl-3-eth-
ylimidazolium bis(trifluoromethylsulfonyl)amide
([emim][Tf2N]), and 1,2-dimethyl-3-ethylimidazolium bis-
(trifluoromethylsulfonyl)amide ([emmim][Tf2N])susing QSPR
methodology. Constant-temperature and temperature-de-
pendent correlations were created with R2 ranging from 0.90
to 0.99. In all three ionic liquids, log KOW was the most
significant property followed by solute aromaticity and
charge distribution on solute-solvent interactions. In tem-
perature-dependent correlations the hydrogen bonding
(Hbonds) became the most influential interaction.

A similar set of 38 organic compounds with infinite
dilution activity coefficients (ln γi

∞ at 313 and 343 K) in
ionic liquids such as 1-methyl-3-ethylimidazolium bis((tri-
fluoromethyl)sulfonyl)imide, 1,2-dimethyl-3-ethylimidazo-
lium bis((trifluoromethyl)sulfonyl)imide, and 4-methyl-N-
butylpyridinium tetrafluoroborate were studied by Tämm and
Burk490 using the CODESSA PRO program.74 Three theo-
retical molecular descriptors correlated satisfactorily with the
activity coefficients with R2 ranging from 0.943 to 0.966.
The complementary information content, the fractional partial
negative surface area, and the count of hydrogen donor sites
descriptors could be related to the nature of the dilution
process in ILs. More recently, Wang et al.491 showed that
infinite dilution activity coefficients of molecular solutes in
ILs can be represented by the tradional UNIFAC480 model
using a novel group segmentation method. Molecular solutes
including alkanes, alkenes, aromatics, alcohols, ketones, and
water in six ILs were well correlated within 9% of rmsd.
Katritzky et al.492 correlated the solubilities of 90 organic
solutes measured as Ostwald solubility coefficients (log L)
in eight ILs with R2 > 0.91. The solute interactions with the
ILs were most often described by descriptors reflecting the
hydrogen donor/acceptor ability of the solutes and those

reflecting size and shape effects. For more general screening
for suitable solutes, a general QSPR representation of log L
for all eight ILs as a group was created using four descriptors
occurring most frequently in the previous models.

5.2. Partition Coefficients
5.2.1. Octanol-Water Partition Coefficient

The n-octanol/water partition coefficient is the ratio of the
concentration of a chemical in n-octanol to that in water in
the two-phase system at equilibrium. The logarithm of this
partition coefficient, log P, is the parameter that determines
the lipophilicity of a molecule, and it has found wide
application in the prediction of biological activities, ADME,
and toxicological end points. The partition coefficient has
also been used in calculating numerous physical properties
such as membrane transport and water solubility. Thus, a
reliable computational model for the estimation of log P is
of immense importance in drug discovery and design, since
it is important to know the lipophilic properties of a
compound before it is synthesized.

Several log P calculation methods from chemical structure
have been developed. The methods fall into two classes: (i)
the group contribution approach and (ii) the whole molecule
approach. The group contribution approach includes “atom-
based” and “fragment-based” methods, in which a molecule
is divided into atoms or fragments and the log P values are
calculated by summation of the contributions from the
fragments or atoms present in the molecule. The whole
molecule approach is based on molecular properties such as
electrostatic potential, molecular surface area, and molecular
volume.

Hansch and Fujita developed the first model for calculating
log P in 1964493 based on the π-system. The limitations of
the π-system led Rekker494 to develop the first “fragment-
based” methods, and later Broto495 reported the first “atom
based” contribution methods for calculating the log P values.
Since then several other calculation methods have been
proposed. Mannhold et al. listed the addresses of the
programs for the calculation of log P,496 and they reported a
comparative study of log P calculation methods.497-499 In
2000, Leo summarized the various uses of log P as a
descriptor in the prediction of biological activities of 3500
QSARs, assessment of the environmental hazard of organic
chemicals, and biodegradation of chemicals.500a Katritzky et
al.41 and Holder et al.500b recently reported QSPR models
involved in the prediction of log P. Various methods used
for the prediction of the octanol-water partition coefficient
and the advantages and limitations of the approaches were
described by Livingstone.501 A minireview has appeared
describing recent methodologies for the calculation of log P
and their use in the prediction of membrane transport of
drugs,502 which summarizes the methods of calculation of
log P, and QSPR models developed using molecular descrip-
tors, during the past decade.

The first computerized log P calculation model was
developed by Leo and Hansch in 1982 based on the group
contribution approach, and it was implemented in a computer
program as ClogP.503 In the latest, revised version of ClogP
4.0,504 a new algorithm FRAGLAC, which is based on a set
of around 600 dependably measured descriptors, was used
to calculate the contribution values of the fragments having
only aliphatic or aromatic bonds. The average deviation of
the model is 0.31 log unit.503 KlogP505 uses an artificial
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intelligence system, Computer Automated Structure Evalu-
ation (CASE) methodology for the development of the log
P model. The log P model was derived by using 94 atomic
and fragment based group descriptors based on a database
of 1663 compounds and showed an R2 value of 0.928 and
standard error of 0.38 log units. The AlogP506 model uses a
pure atom-based contribution method for calculations of log
P values based on a data set of 9920 organic compounds
having R2 of 0.918 and s of 0.68 log unit. In 2000,
Viswanadhan et al.507 developed a novel program, HlogP,
which uses new fragment types, molecular holograms, as
descriptors for building a PLS regression model. HlogP has
been shown to have better predictability for druglike
molecules compared to ClogP and AlogP models.477 Man-
nhold’s ∑f -system498,508 represents a log P model based on
169 hydrophobic fragmental descriptors and 13 correction
factors. In the revised LOGKOW model, a new methodology,
the experimental value adjusted (EVA) approach, was used
to calculate the fragment contributions by comparison of
closely related analogues.509 This program is suitable for the
calculation of log P values of unknown structures from a
target compound on the learning set. Meylan et al. recently
revised the LOGKOW model, which was derived from 150
atom-fragment and 250 correction factors.509 They reported
R2 ) 0.943 for calculating the log P values of the learning
set of 10589 compounds. ACD/LogP v7.0 (Advanced
Chemistry Development Inc., Toronto Ont., Canada, 2003)
includes 500 basic fragment descriptors (f) and over 2000
correction factors (F) using fragmentation rules based on the
definition of an isolated carbon (IC).510 An XLOGP model
was developed by Wang et al. in 1997 based on a pure atomic
contribution approach.511 The recently released version of
the model XLOGP v 2.0512 (s ) 0.35 and R2 ) 0.946)
includes 90 atom type descriptors and 10 additional correc-
tion factors in describing the log P for a database of 1853
organic compounds.

Property-Based Approaches. The partition coefficient log
P is proportional to the molar Gibbs free energy of transfer
between octanol and water, and hence, it should be dependent
on the molecular properties that contribute to this free energy.
In this approach various statistical methodologies (PLS,
ANNs, etc) have been applied. An early attempt was made
in 1969 by Rogers to correlate log P with molecular
properties based on MO theory.513 Klopman et al.514 used
quantum mechanical calculations based on the MINDO
program and Huckel type calculations for the estimation of
log P. The BlogP of Bodor and Huang,515 QlogP of Bodor
and Buchwald,516,517 VLOGP of Gombar and Enslein,518,519

MlogP model of Moriguchi et al.,520 AUTOLOGP of
Devillers,521,522 HYBOT and SLIPPER-2001 of Raevsky and
co-workers,523,524 ScilogP and ALOGPS of Tetko and

co-workers,525,526 CLIP_logP of Gaillard et al.,527 and HINT
model of Kellogg528,529 were reviewed by Klopman and
Zhu502 regarding the basic features of the programs. In Table
6 we have listed some recent computer programs available
for calculation of log P.

Klopman et al.530 reported a revised group contribution
model for the calculation of log P. Their model includes 153
basic parameters, 41 extended parameters, and 14 molecular
surface property descriptors based on a training database of
8320 chemicals. The model achieved significant improve-
ment after modifying the traditional group contribution
equation by using a 3D steric hindrance modulator. The
predictability of the model was assessed by calculating the
log P values of a test set of 1667 organic chemicals and 137
druglike chemicals. A structural analogue approach has been
applied by Sedykh and Klopman531 which includes 102 basic
parameters and 36 correction factors whose coefficients are
optimized on the basis of the sets of similarity pairs produced
from the training set data of 8320 chemicals. The authors
reported a comparison of the present similarity model with
their previous model and other known models (ClogP,
KowWin, AUTOQSAR/MLR, AUTOQSAR/PLS, AUTO-
QSAR/NN). Eros et al.532 reviewed the reliability of log P
predictions based on calculated molecular descriptors. They
also assessed the reliability of their logP program called
AutoQSAR (Auto-MLR, Auto-PLS, Auto-NN). A ALOGPS
program was developed with 12908 molecules from the
PHYSPROP database using 75 E-state indices. Sixty-four
ANNs were trained using 50% of molecules selected by
chance from the whole set. The log P prediction accuracy
had rms ) 0.35 and a standard mean error of 0.26 log
unit.525,526

An ANN was applied by using atomic fragment descriptors
included in the Pallas PrologP program (www.compudrug.
com) based on Ghose-Crippen fragmentation533 and ad-
ditional correction terms to modify atomic contributions for
the estimation of log P. The correlation statistics for the
training set (8729 compounds) and the test sets 1 and 2 (2000
compounds) were (R2 ) 0.94, s ) 0.01), (R2 ) 0.91, s )
0.02), and (R2 ) 0.92, s ) 0.02), respectively.534 Lombardo
et al.535 devised a RP-HPLC method, for the determination
of log Poct values of neutral drugs, which showed high
accuracy for a set of 36 drug molecules. Linear free energy
relationship (LFER) analysis, based on solvation parameters,
showed that the method encodes the same information as
obtained by a shake-flask log Poct determination. Hawkins
et al.536 reported prediction of partition coefficients based
on the geometry-dependent atomic surface tensions. No et
al. revised the previously reported solvation free energy
density (SFED)537 model based on overestimation in the
hydration free energies of the molecules having highly

Table 6. List of Some Computer Programs Available for Calculation of log P

program calculation methoda software released ref

ClogP fragmental-HL BioLoom www.biobyte.com
PCModels fragmental-HL ClogP 4.0 www.daylight.com
PrologP fragmental-R PrologP www.compudrug.com
SYBYL fragmental-R ClogP www.tripos.com
ACD/LogP fragmental-A/F ACD/LogP www.acdlabs.com
LOGKOW fragmental-A/F KowWin www.srcinc.com
KlogP fragmental-C KlogP Klopman et al.530

ALOGPS electrotopological indices ALOGPS 2.1 www.vcclab.org
VLOGP LFER and topological indices Gombar and Enslein518

SLIPPER polarizability and hydrogen bond acceptor strength SLIPPER-2001 www.timtec.net

a The fragmental methods refer to the systems of Hansch and Leo (HL), Rekker (R), computer identified (C), and atom/fragment contributions
(A/F).
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polarizable atoms.538 The authors calculated log P from the
free energy differences and from the log P density (LPD)
based on the SFED model, which showed absolute mean
errors of 0.34 and 0.32, respectively. A recent study by
Machatha and Yalkowsky539 showed ClogP to be a more
accurate predictor of log P as compared to the predicted log
P with the ACD/logP and KowWin programs. Their analysis
showed the average absolute error (AAE) for KowWin 0.358,
ACD/logP 0.386, and ClogP 0.329, respectively, for a set
of 108 diverse compounds.

Some recent QSAR/QSPR models of log P developed
using molecular descriptors are listed in Table 7.

To a lesser extent, partitioning coefficients in other aqueous
systems have been studied, e.g the work of Leahy and co-
workers, who employed Abraham LSER (linear solvation
energy relationship) descriptors to model the respective log
P values in four solvent-water systems: octanol (amphipro-
tic), alkane (inert), chloroform (proton donor), and propylene
glycol dipelargonate (PGDP; proton acceptor)550sthe “critical
quartet.551 An almost complete data matrix of 82 fragment
values (f-values) for all four solvents resulted. It was
suggested that the ”critical quartet” could be used as a model
solvent system for membrane binding and transport charac-
teristics that might have special relevance to biological
selectivity.

In addition to the Poct (octanol-water), three other partition
coefficients of liquids and solids in different solvent systems,
such as P16 (water-hexadecane), Palk (water-alkane), and
Pcyc (water-cyclohexane), were estimated by Khadikar et
al.552 using the PI (Padmakar-Ivan) index553 and the widely
used Wiener index (W). For n-alkanes the advantages of the
PI index in terms of higher correlation coefficients with the
studied properties compared to the W index were clearly
shown.

Oliferenko et al.545 have applied their newly established
quantitative scales of hydrogen bond (HB) basicity and

acidity to seven equilibrium partitioning data setssoctanol-
water (see Table 7), hexadecane-water, and chloroform-
watersas well as gas-water, gas-octanol, gas-hexadecane,
and gas-chloroform partition coefficients. The hydrogen bond
descriptors when supplemented by a cavity-forming term and
a dipolarity term showed high performance in correlations
of the partition coefficients of aliphatic compounds. These
new HB descriptors can be used in studying hydrogen
bonding and fluid phase equilibria as well as scoring
functions in ligand docking and descriptors in ADME
evaluations.

5.2.2. Aqueous Biphasic Partitioning

Aqueous biphasic systems (ABS) are formed by the
addition of two (or more) water-soluble polymers or a
polymer and salt to an aqueous solution above a certain
critical concentration or temperature. ABSs are unique
because each of the two nonmiscible phases is over 80%
water on a molal basis and each possesses different solvent
properties.554,555 The distribution coefficient (D) is defined
as the total concentration of a solute in the upper polyethylene
glycol (PEG)-rich phase (CPEG) divided by the concentration
in the lower salt-rich phase (Csalt). Usually the logarithmic
function (log D) is used for describing the distribution
coefficients.

Due to its highly aqueous and hence mild nature, which
is consonant with the maintenance of macromolecular
structure, ABS has been employed for the separation of
biological macromolecules for over 40 years555,556 and for
the evaluation of the relative hydrophobicity of organic
compounds or biopolymers such as peptides and proteins.557-560

Proteins and nucleic acids are prone to denaturation in
alcohols, whereas suitable polymer/water compositions can
more closely resemble the native living cell conditions.
Eiteman and Gainer have studied the partitioning of amino

Table 7. List of QSPR Models Developed for the Prediction of log P

compounds N descriptors approach model statistics ref

polychlorinated biphenyls 133 electrophilicity index,
ELUMO, NCl

MLR R2 ) 0.914, s ) 0.225 Padmanabhan et al.540

organic compounds 69 correlation weights of local
graph invariants

MLR R2 ) 0.995, s ) 0.096 Basak and Mills541

diverse compounds 136 topochemical RR R2
CV ) 0.570, s ) 0.225 Shamsipur et al.542

diverse organic compounds 379 distance-connectivity
based TIs

PC-ANN R2 ) 0.963, s ) 0.281 Al-Fahemi et al.543

diverse compounds 76 molecular descriptors
based on
momentum-space
(p-space) electron density

MLR R2 ) 0.964, s ) 0.256 Lamarche et al.544

druglike compounds 79 descriptors calculated
based on polarity,
hydrogen bond acidity,
basicity

MLR R2 ) 0.886, rms ) 0.43 Oliferenko et al.545

diverse organic compounds 90 basicity, acidity,
polarizability, integral
polarity

MLR R2 ) 0.970, s ) 0.233 Gao and Cao546

polychlorinated biphenyls
(PCBs)

157 HOMO-LUMO
interaction

MLR R2 ) 0.9235, s ) 0.224 Zou et al.547

disubstituted benzene 103 sum of the surface minima
values of the electrostatic
potential, molecular
volume, PSA

MLR (6) R2 ) 0.925, s ) 0.247 Wegner et al.548

diverse organic compounds 1853 descriptors based on
differential Shannon
entropy (DSE)

GA-ANN R2 ) 0.846, s ) 0.44 Peruzzo et al.549

diverse industrial
chemicals

76 correlation of local
invariants of hydrogen
filled graphs

MLR R2 ) 0.887, s ) 0.51 Padmanabhan et al.540
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acids, small peptides, and alcohols in ABS.561,562 Gulyaeva
et al.563 studied the partitioning of 153 dihexapeptides in an
aqueous dextran-PEG biphasic system and reported that the
peptide bitterness threshold is quantitatively related to the
relative hydrophobicity and lipophilicity (log D) of peptides,
which are responsible for their biological activities.

However, due to variable composition, it seems that the
QSPR analysis of ABS is more complex than that of the
octanol-water system, which has a constant phase composi-
tion. Experimental investigations of the partitioning behavior
of organic molecules in PEG/salt ABS have been reported
by Rogers et al.,564-566 who applied a linear solvation energy
relationship (LSER) based on Abraham’s generalized sol-
vation equation, which enabled a direct comparison between
the solvent properties of PEG/salt ABS and those of
traditional solvent/water systems.567,568 LFER studies con-
cluded that the principal determinants which govern the
partitioning in ABS arise from the size, basicity, and
aromaticity or halogenicity of the solute. The first theoretical
molecular model for the prediction of partitioning in ABS
using descriptors solely calculated from structure was that
of Katritzky et al.,569 who employed structural descriptors
included in CODESSA PRO for the prediction of log D of
organic solutes in a PEG/aqueous biphasic system. The
partitioning of 29 small organic probes in a PEG-2000/
(NH4)2SO4 ABS was satisfactorily described with a three-
parameter QSPR model (R2 ) 0.967, R2

cv ) 0.956). All the
descriptors involved were calculated solely from chemical
structures and have definite physical meaning corresponding
to different intermolecular interactions. A single-parameter
model involving calculated log P (octanol/water) values as
an independent variable also demonstrates high statistical
quality (R2 ) 0.89). The results described in this paper should
help to improve our understanding and prediction of partition
coefficients in PEG/salt ABS for structurally diverse
compounds.

log P refers to the neutral state of molecules. In the
presence of a basic or acidic group, the ionization of a
molecule provides an additional factor, since partition
becomes pH-dependent. The pH-dependent distribution coef-
ficient, log D, was shown to correlate with a number of
biological properties, such as the effective permeability in
human jejunum,570 blood brain barrier (BBB) permeability,571

plasma protein binding,572 CYP 450 oxidation,573 and volume
of distribution (VD).574,575 The pH-dependent distribution
coefficient, log D, is related to log P through pKa. The
problem of predicting log D is more complicated. As a rule,
it is computed from log P and pKa (eq 12), assuming that
only the neutral form of the molecule will partition into the
organic phase.501,576

where ∆i ) {1, -1} for acids and bases, respectively.
If several groups may be ionized, correction terms must

be included in the equation for each of them. Thus, the log
D prediction potentially suffers errors due to errors in both
log P and pKa predictions. Lombardo and co-workers577

determined a robust method by using RP-HPLC of octanol-
water distribution coefficients at pH 7.4, noted as ElogDoct.

Xing and Glen578 reported a three-parameter (polarizability
and partial atomic charges on nitrogen and oxygen atoms)
equation with R2 ) 0.89, for log P of 592 compounds, and
an estimation of pKa values in order to calculate log D values.

Development of computational approaches is further com-
plicated by the absence of large data sets with experimental
log D values. Only a few programs are available to estimate
log D values including PrologD,579 ACD/logD [www.
acdlabs.com], and SLIPPER [software.timtec.net]. Tetko and
Bruneau580 used ALOGPS 2.1 based on self-learning proper-
ties of associative neural networks and reported a rms of
0.7 for 2569 neutral log P, and a mean average error of 0.5
for 8122 pH-dependent log D7.4, distribution coefficients from
the AstraZeneca “in-house” database. Later on, Tetko and
Poda581 evaluated ALOGPS, ACD/logD, and PALLAS
prologD software to calculate the log D distribution coef-
ficients and reported a high rms of 1.0-1.5 log units for
two in-house Pfizer’s log D data sets of 17,861 and 640
compounds. The authors have demonstrated that the ANN-
based ALOGPS is superior, compared to the ACD/LogD and
PALLAS PrologD programs, which reduced rmse for log D
prediction to 0.64 and 0.65 (compared to 1.17 and 1.33) for
data sets of 17,341 and 640 compounds, respectively.

5.2.3. Gas to Olive Oil Partition Coefficients

In 1923, Meyer582,583 measured gas to olive oil partition
coefficients, K(olive), and demonstrated the use of gas to
olive oil partition coefficients as a model for gaseous narcosis
or anesthesia. K(olive) is defined as the concentration of a
solute in olive oil to the concentration of the solute in the
gas phase. K(olive) values have traditionally been related to
anesthetic properties and used in empirical relationships for
the prediction of gas to tissue partition coefficients.584,585 Few
correlations have been reported for the prediction of K(olive)
values. Abraham and Weathersby586 correlated gas to oil
partition coefficients of 88 organic compounds based on the
Abraham solvation equation with R2 ) 0.997 and s ) 0.082.
Abraham and Fuchs587 later correlated log K(olive) for 52
compounds with R2 ) 0.947 and s ) 0.233 by using three
descriptors (volume, molar refraction, and dipole moment).
Klopman et al.588 used a group contribution approach for
the prediction of 159 compounds with R2 ) 0.938, s ) 0.295
from 24 fragments. However, their data set included some
previously calculated log K(olive) values.

Katritzky et al.589 employed calculated molecular descrip-
tors using CODESSA PRO software for the correlation of
log K(olive) values for 100 training set compounds and an
independent test set of 33 compounds. A five descriptor MLR
model with R2 ) 0.922 and s ) 0.232 log units was obtained
for the training set. The authors used the same equation for
the prediction of log K(olive) values for the 33 test
compounds with a fit characterized by R2 ) 0.846. In a recent
study, Abraham and Ibrahim590 obtained a QSPR model for
log K(olive) with R2 ) 0.981 and s ) 0.196 log unit for a
data set of 215 compounds based on the Abraham’s linear
free energy equations. Their study showed that gas to
biological phase partition can be described in an empirical
way by a combination of gas to olive oil and gas to saline
coefficients.

5.3. GC Retention Indices
Gas chromatography (GC) is one of the most widely

employed analytical techniques due to its simplicity, rapidity
of analysis, high sensitivity of detector systems, and ef-
ficiency of separations. Thus, GC has found wide application
in pharmaceuticals, environmental studies, petroleum indus-
tries, clinical chemistry, analysis of pesticides, food preserva-

log D(pH) ) log P - log(1 + 10(pH-pKa)∆i) (12)
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tives, etc.591 Identification of a compound is often accom-
plished on the basis of gas chromatographic peak comparisons
with an authentic standard of the suspected material.
However, it is not always possible to obtain samples of the
pure standard material. Thus, it is desirable to develop
methods for the prediction of retention characteristics of the
unknown compound based on the structural features and
chromatographic properties of other representative com-
pounds. Retention is a phenomenon that is mainly dependent
on the solute-sationary phase interactions. Ideally, each
solute will exhibit unique retention characteristics based on
its chemical, structural, and electronic properties. QSPR
methodology is widely accepted in various areas of applica-
tion, which relate the properties of a molecule with its
structure. The process of relating chemical structure to
chromatographic retention comprises a field of research
known as quantitative structure-retention relationships
(QSRR). Numerous publications have appeared in this area
during the past two decades, including a book by Kaliszan592

based on several aspects of the development of valid
estimation models and the significance of model parameters.
Numerous QSPR models developed for the prediction of the
retention index are listed in Table 8.

Gas chromatographic retention times were related by
Katritzky et al.620 to chemical structures. Duvenbeck and Zinn
reported a general method for fitting the GC retention index
data using three topological indices and one electrotopo-
logical state (E-state) index in the so-called vertex and edge
MLR models.602 For a data set of 217 acyclic and cyclic
alkanes, alkenes, alcohols, esters, ketones, and ethers, their
edge model gave a mean absolute error of 9 retention index
units. However, application of this model to the prediction
of retention indices for test compounds of the same classes
gave prediction errors from 15 to 22 retention index units.603

Jurs et al. correlated indices of substituted pyrazines,621

polycyclic aromatic compounds,622 stimulants and narcot-
ics,598 and anabolic steroids599 with charged partial surface
area (CPSA) and topological and geometrical descriptors.
These MLR analysis descriptors encode information related
to the interactions between the solute (and solvent) molecules
in the stationary phase during the separation process. As the
polarity of the stationary phase is changed, different descrip-
tors become important, and therefore, each phase must be
modeled separately.

Buydens, Massart, and Geerlings combined topological
descriptors with quantum-chemical descriptors to predict the
GC retention indices of mono- and bifunctional alcohols and
ketones.623 In a more general QSPR study, Katritzky et al.
used a mixed set of topological and quantum-chemical
descriptors to correlate GC retention times of 152 structures
encompassing a wide cross section of organic compounds.604

A forward procedure for the selection of molecular descrip-
tors for MLR analysis in the CODESSA program gave a
six-parameter model (R2 ) 0.959, Rcv

2 ) 0.955, s ) 0.515),
in which the AM1-computed R-polarizability was the most
important descriptor. These results were recently re-evaluated
using improved CODESSA procedures and new methods for
the efficient selection of variables in the MLR analysis.606

Quantum-chemical descriptors were employed by Donovan
and Famini in a theoretical linear solvation energy relation-
ship (TLSER) investigation of the GC retention indices of
37 organosulfur compounds.624 From each of the three
semiempirical methods (MNDO, AM1, and PM3) used to
compute the six TLSER descriptors, similar correlations were

obtained: R2 ) 0.88-0.92. These results had a statistical
quality similar to that of the previous study of the same
compounds by Woloszyn and Jurs.600 However, the TLSER
approach624 was also able to handle compounds containing
sulfur-sulfur bonds, which were omitted in the four-
parameter correlation with topological and CPSA descriptors
obtained by Woloszyn and Jurs.600

Whereas most QSRR predictions of GC retention indices
are based on multilinear regressions, Bruchmann, Zinn, and
Haffer showed recently that ANNs can be trained using
electrotopological indices of monofunctional compounds by
the back-propagation technique to predict the corresponding
retention index data.625 Sutter, Peterson, and Jurs applied
ANNs to predict retention indices of alkylbenzenes from their
molecular structure.605 They used the ADAPT software to
calculate 182 descriptors and MLR analysis in combination
with evolutionary optimization algorithms to select a subset
of descriptors relevant to mapping retention indices. Six
descriptors from their best MLR model (three topological,
one geometrical, and two CPSA descriptors) were used with
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method
to train a 6:5:1 ANN, which improved the rms for both
training and prediction sets from 18.0 and 21.8 to 13.4 and
17.6, respectively. The counter-propagation ANNs applied
for the prediction of GC retention indices were shown to be
inferior compared to the back-propagation ANN and MLR
models.626,627

Zarei and Atabati628 correlated the GC retention indices
for 178 insect-produced methyl substituted alkanes using an
ANN approach based on simple structural descriptors. The
authors found a correlation with R2 ) 0.978 and RMSE of
3.1 by using a 9:8:1 ANN architecture.

5.4. GC Response Factors
Application of gas chromatography (GC) as a tool for

quantitative estimation requires knowledge of the response
factor (RF) for each compound under the GC experimental
conditions employed. Since numerous compounds are un-
available as standards, the development of a theoretical
method for estimating the RF is potentially useful.

During the last five decades, several books and articles
have been published on the determination and explanation
of the RF on various detector devices connected to a GC.
For detailed information on response factors, the reader is
referred to the literature.591,629-633

The flame ionization detector (FID) response is based on
the ionization of carbon containing molecular fragments and
is dependent only on the carbon content of the molecule in
question. The number of carbon atoms per gram of the
compound not bonded to one or more heteroatoms or halogen
atoms is the so-called “effective carbon number” (ECN).
Scanlon et al.634 used the ECN approach to calculate FID
response factors for compounds not available in pure form.
Predictions of GC (FID) response factors for a diverse
structural class of compounds were published for the first
time by our laboratory in collaboration with Musumarra’s
group,635 using a multivariate statistical PLS treatment. A
three component PLS model was found which explains 84%
of the variance in the RF data. In another paper604 the QSPR
treatment for the prediction of Dietz response factors for a
large and widely diversified set of 152 organic compounds
was established using CODESSA. A MLR model with cross-
validated squared correlation coefficient R2

CV ) 0.881 was
achieved using six structural descriptors, including the
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Table 8. List of QSPR Models Reported on the Prediction of Retention Indices

compounds N descriptors approach model statistics Reference

olefins (C4-C6) 86 physical properties (BP, log P)
and geometrical descriptors
and mol. wt

MLR (4) R2 ) 0.994, s ) 7.79 Rohrbaugh and Jurs593

polycyclic aromatic
compounds (PACs),
nitrated PACs

73 physical properties (BP, MR)
geometrical descriptors

MLR (3) R2 ) 0.984, s ) 6.87 Rohrbaugh and Jurs594

polychlorinated
biphenyls

209 fragment, geometrical MLR (5) R2 ) 0.997, s ) 0.01 Hasan and Jurs595

diverse drug
compounds

100 (trn) mol. wt, fragment descriptors MLR (5) R2 ) 0.941, s ) 122 Rohrbaugh and Jurs596

44 (test) mol. wt, fragment descriptors MLR (5) R2 ) 0.902
pyrazines (OV-101) 107 topological, geometrical,

electronic
MLR (6) R2 ) 0.994, s ) 22.9

pyrazines
(carbowax-20)

107 topological, geometrical,
electronic

R2 ) 0.986, s ) 36.3

polyhalogenated
biphenyls

53 geometrical, connectivity MLR (5) R2 ) 0.989, s ) 45 Hasan and Jurs597

pyrazines
(carbowax-20)

107 CPSA, geometrical, structural MLR (6) R2 ) 0.988, s ) 32.9 Stanton and Jurs158

pyrazines
(carbowax-20)

107 CPSA, geometrical, structural MLR (9) R2 ) 0.994, s ) 26.7

stimulants and
narcotics

57 topological, electronic,
fragment

MLR (6) R2 ) 0.982, s ) 0.046 Georgakopoulos et al.598

anabolic steroids 45 geometrical, topological MLR (9) R2 ) 0.982, s ) 0.027 Georgakopoulos et al.599

sulfur vesicants (DB-1) 31 topological, geometrical,
CPSA

MLR (4) R2 ) 0.996, s ) 31.5 Woloszyn and Jurs600

sulfur vesicants (DB-5) 31 topological, geometrical,
CPSA

MLR (4) R2 ) 0.996, s ) 33.1

sulfur vesicants
(DB-1701)

30 topological, geometrical,
CPSA

MLR (4) R2 ) 0.996, s ) 43.8

sulfur vesicants (DB-1
and DB-5)

62 topological, geometrical,
CPSA, indicator variable

MLR (5) R2 ) 0.996, s ) 34.7

hydrocarbons separated
from naphtha
mixture, SE-30

67 mol. wt, topological,
geometrical

MLR (4) R2 ) 0.966, s ) 18.6 Woloszyn and Jurs601

hydrocarbons separated
from naphtha
mixture,
carbowax-20M

65 mol. wt, topological,
geometrical, CPSA

MLR (5) R2 ) 0.933, s ) 23.3

diverse compounds
(alkanes, alkenes,
alcohols, esters,
ketones, and ethers)

217 topological, E-state index MLR mean absolute error (7...9) Duvenbeck and Zinn602,603

diverse organic
compounds

152 constitutional, thermodynamic,
electronic

MLR (6) R2
CV ) 0.955, s ) 0.503 Katritzky et al.604

alkylbenzenes 150 topological, geometrical,
electronic

MLR (6) based on evolutionary
optimization technique

R2 ) 0.982, rms ) 18.0 (train),
rms ) 21.8 (predn set)

Sutter et al.605

150 topological, CPSA ANN (6) rmse ) 11.7 (train), rms ) 13.4
(predn set)

Sutter et al.605

polychlorinated
biphenyls

209 3D descriptors (WHIM), GA
selected descriptors

MLR (2) R2 ) 0.984, SDEC ) 0.023,
SDEP ) 0.023

Gramatica et al.224

diverse organic
compounds

152 topological, geometric,
electronic (variable selection)

nonlinear (6) R2 ) 0.977, s ) 0.379 Lučić et al.606

methyl alkanes 178 topological MLR (4) R2 ) 0.959, s ) 5.8 Katritzky et al.607

aldehydes, ketones
(HP-1)

31 topological (Xu and
atom-type-based AI indices)

MLR (4) R2 ) 0.998, s ) 7.73 Ren608

aldehydes, ketones
(HP-50)

31 topological (Xu and
atom-type-based AI indices)

MLR (4) R2 ) 0.996, s ) 9.19

aldehydes, ketones
(DB-210)

31 topological (Xu and
atom-type-based AI indices)

MLR (5) R2 ) 0.995, s ) 12.03

aldehydes, ketones
HP-Innowax

31 topological (Xu and
atom-type-based AI indices)

MLR (5) R2)0.993, s ) 13.45

diverse organic
compounds

632 semiempirical topological
index (IET)

LR R2)0.9997, s ) 17.7 Junkes et al.609

548 semiempirical topological
index (IET)

LR R2 ) 0.9997, s ) 7.01

polycyclic aromatic
hydrocarbons

44 mol. wt, Wiener index,
polarizability, hardness,
ELUMO

PLS, PCR R2 ) 0.898, s ) 13.45 Alves de Lima Riberio and
Ferreira610

alkanes 64 topological and others MLR R2 ) 0.997, s ) 8.09 Cao et al.245

CNSagents
(benzodiazpines,
barbiturates, and
phenytoin (DB-5))

37 topological and electronic MLR R2 ) 0.976, s ) 18.8 Hodjmohammadi et al.611

CNSagents
(benzodiazpines,
barbiturates, and
phenytoin (DB-17))

32 topological and electronic MLR R2 ) 0.966, s ) 49.8

hydrocarbons 207 topological MLR (7) R2 ) 0.999, s ) 3.49 Hu et al.612

diverse organic
compounds

846 topological, constitutional,
electronic, fragmental
(calculated by DRAGON*),
stepwise selection

PLS SEP ) 79, SEC ) 81 Garkani-Nejad et al.613

nitrogen containing
polycyclic aromatic
hydrocarbons

117 topological, fragmental MLR R2 ) 0.985, s ) 10.3 Hu et al.614

methyl-substituted
alkanes

178 fragment, indicator variables ANN (9:8:1) R2 ) 0.978, rms ) 3.1 (calibration
set) (n ) 30, R2 ) 0.939, rms )
4.9), prediction set

Zarei et al.615
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relative weight of “effective” carbon atoms and the total
molecular one center one-electron repulsion energy in the
molecule. A variable selection method implemented non-
linear cross-term multiregression (MR) model was devel-
oped606 for the prediction of the RF with greater accuracy.
This variable selection based MR approach enabled the
selection of the best possible MR models from 1010

possibilities.
Huang et al.636 determined FID relative weight response

factors and FID relative carbon weight response factors for
a variety of compounds: hydrocarbons, chlorohydrocarbons,
bromohydrocarbons, and oxygenated hydrocarbons. They
also determined the FID relative response factor and the FID
relative carbon response factor for a variety of compounds.

Morvai et al.637 determined FID response factors for 130
organic acid esters, such as ethyl, isopropyl, n-propyl,
isobutyl, and n-Bu esters of C1-C20 fatty acids, C2-C12

aliphatic dicarboxylic acids, and benzoic and o-phthalic acids
by using the ECN approach.

Jalali-Heravi and Fatemi638 applied a ANN to develop a
nonlinear model for the FID response factors of various
classes of organic compounds.604 They showed the higher
predictive power of the ANN model over a MLR model.
Jalali-Heravi and Fatemi639 implemented the ANN approach
for the prediction of thermal conductivity detection (TCD)
response factors of a set of 110 organic compounds, including
hydrocarbons, benzene derivatives, esters, alcohols, alde-
hydes, ketones, and heterocyclics. They also developed linear
models using theoretical molecular descriptors for the
prediction of TCD-RFs and applied those descriptors as
inputs for the ANN. Saradhi et al.640 studied the response
mechanism of thermionic detection (TID) of a series of
organophosphate esters. They found that the response to TID
decreases with the increase of the alkyl chain length of the
molecules studied.

The relative response factors (RRFs) of a flame ionization
detection (FID) system were predicted for diverse organic
compounds,641 using molecular descriptors for the develop-
ment of a MLR model and then employing those descriptors
as inputs for the self-training ANNs. They then compared
the two models and observed the superiority of ANNs over
that of the MLR method.

The RRFs of an electron-capture detection (ECD) system
were predicted for a set of 118 polychlorinated biphenyls
(PCBs)642 based on two different internal standards. The
authors developed a MLR model for the prediction of RRFs
by using two descriptors of molecular ion ionization potential
(MIIP) and ionization potential of the molecule (IP) that are
related to the affinity of the compounds. The descriptors
employed were those used in the MLR model as inputs for
developing the back-propagation ANNs. A QSPR model was
developed for the gas chromatography thermionic detector
(GC-TID) response factor of organophosphorous compounds
taken from Saradhi et al.640 using physicochemical and
electronic descriptors.643 The authors employed a combina-
torial protocol in MLR, by using a “filter”-based variable

selection procedure for the development of the model and
achieved a four-descriptor correlation with R2 ) 0.891 for
28 organophosphorous compounds.

5.5. Gas Phase Homolysis
Homolysis is a simple elementary chemical reaction of

bond fission generating two free radicals (eq 13):

Gas-phase homolysis reactions are unimolecular at low
pressure644 and thus characterized with a temperature-
dependent first order rate constant which is usually described
by the activation parameters of the respective Arrhenius
equation. The rate constant of homolysis is the key parameter
of thermal stability.

Theoretical prediction of the gas phase homolytic rate
constants of 79 diverse nitro compounds by the QSPR
approach was proposed by Sukhachev et al.645 The radical
cleavage of C-N and N-N bonds was the primary step in
their thermolysis. About 3000 descriptors were computed
for each structure, including topological and information
indices, indices based on electronegativities of atoms,
substructures, etc. The most stable of the regression models
was constructed on 11 descriptors (R2 ) 0.99), nine of which
were electrotopological states descriptors of atoms in dif-
ferent fragments, which are known to reflect the electron
density distribution on atoms. The predictive power of the
model was R2 ) 0.96, based on the test set of 10 compounds.

Hiob and Karelson646,647 have modeled the rate constants
of the gas-phase C-X and C-CH3 bond homolysis. Initially,
five-, four-, and three-parameter models were developed for
the kinetics parameters of 287 different C-X bonds gas-
phase homolyses at 891 K. A general model (R2 ) 0.80)
included all 287 data points and the following five molecular
descriptors: rotational entropy (300 K), relative number of
C atoms, maximum σ-π bond order, HOMO-1 energy -
HOMO energy, and the relative number of I atoms. In the
following study,653 a six-parameter model was developed for
the prediction of the log k (at 1047 K) for 58 different
C-CH3 bonds derived from information encoded in the
chemical structure of compounds.

5.5.1. Gas Phase Ion Mobility Constants

Due to the high sensitivity and rapidity of the ion
separation process (an order of milliseconds) combined with
ease of use, gas-phase ion mobility constants have found
wide analytical application in the detection of explosives,
drugs, chemical weapons, and environmental pollutants by
means of ion-mobility spectrometry. It is also a research tool
for analysis of biological materials, especially in proteomics.
The gas-phase mobility of an ion, K, is determined from the
drift velocity, Vd, attained by the ion in a weak electric field,
E, at atmospheric pressure by eq 14.

Table 8. Continued

compounds N descriptors approach model statistics Reference

methyl alkanes 177 topological, fragment R2 ) 0.999, SEC ) 4.6 (SEP ) 3.7, n )
30 test set)

Liu et al.616

carbazoles 49 topological, constitutional,
electrostatic, quantum chemical

MLR (7) R2 ) 0.9966, s ) 0.58 Nakajima et al.617

halogenated hydrocarbons 23 topological (Lu index) LR R2 ) 0.992, s ) 21.5 Lu et al.618

diverse organic compounds 22, 995 group increment values MLR average and median absolute deviations
AAD ) 70, MAD ) 45

Stein et al.619

A:B f A• + B• (13)
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The reduced mobilities K0 (normalized by pressure and
temperature) increase linearly with the logarithm of molecular
weight or ion mass for a homologous series654 but not for a
diverse set of compounds.648

Wessel et al.649 have used the QSPR methodology to
investigate gas-phase ion mobility. The values of gas-phase
reduced ion mobility constants, K0, were modeled for 70
organic compounds by MLR and ANN. The exclusion of
three outliers (anthracene, m-toluidine, and n-butyl acetate)
gave a good MLR (R2 ) 0.98 and s ) 0.047) with five
descriptors: the charge on the most negative atom, QNEG;
the Kier path 3 shape index corrected for heteroatoms,
KAPA-3A; the Wiener number, ALLP-5; the sum of all path
weights starting from heteroatoms, WTPT-3; and the square
root of the molecular weight, SQMW. This model performed
well for the external test set of seven compounds: s ) 0.047.
The rms errors for the 5-3-1 ANN model including the
same descriptors for the training set of 57 and validation set
of 10 compounds were 0.041 and 0.039, respectively. The
rms error for the external validation set was 0.039. The ANN
enhanced the ability to predict K0 values. The highest R2

value of 0.89 between the SQMW descriptor and K0 indicated
the importance of the molecular weight. Wessel650 attempted
to model K0, using a 6-4-1 ANN on a training set of 135
and a validation set of 15 compounds. The best model (rms
) 0.04 K0 units) was found with a feature selection routine
which couples the genetic algorithm with MLR analysis. The
model contained six molecular descriptors (charge on most
negative atom, QNEG; Kier path 3 shape index, KAPA-3;
path 1 valence connectivity, V1; number of oxygens, NO;
sum of path weights from heteroatoms, WTPT-3; and number
of secondary sp2 C atoms, 2SP2) and was externally validated
with a rms error of 0.038 for 18 compounds. The model can
predict K0 values of compounds for which there are no
empirical K0 data without the need for geometry optimization.

Agbonkonkon et al.651 improved the data set of Wessel et
al.650 by including diverse ions but started out with the same
descriptors. To meet the increased diversity within the data
set, two of the molecular descriptors, namely KAPA-3 and
WTPT were adjusted. The resulting MLR model for 162
compounds had R2 ) 0.80. Later on, this data set was
modeled by Liu et al.652 to develop linear and nonlinear
models for predicting the gas-phase K0 using MLR and
projection pursuit regression. The molecular descriptors were
generated and selected with the aid of the CODESSA
software to be used as inputs for the models. The values of
R2 were 0.908 and 0.938, and the s values were 0.066 and
0.055, for the linear and nonlinear models, respectively, based
on the whole data set of 159 compounds. The models were
internally validated by splitting into training and test sets.

5.6. Soil Sorption Coefficients
The soil sorption coefficient measures the partitioning

capacity of a compound between two phases, liquid (i.e.,
water) and solid (i.e., the soil components). The organic
fraction of the soil is recognized as the part of the soil that
is responsible for the sorption of contaminants. This has led
to the normalization of the soil sorption coefficient by the
organic carbon content, KOC, which also makes comparable
the experimental data from different soils. Soil sorption is
considered of great environmental importance since it
determines the distribution of chemicals and accordingly their

availability to living organisms. Reference soils (the EU-
ROSOILS653) have been determined by the European Com-
mission for profound investigations of the sorption phenom-
ena. More than 200 QSPRs on soil sorption have been
reviewed by Gawlik et al.654 It was shown that the log KOC

values were most frequently modeled with water solubility
(Sw), n-octanol/water partition coefficient (KOW), RP-HPLC
capacity factor (k′), topological indices, or linear solvation
energy parameters. It was concluded that log KOW was most
commonly used to describe soil sorption. Most of the QSPRs
were chemical class- and soil-specific. More recent contribu-
tions are summarized in Table 9.

Due to the heterogeneity of the soil organic constituents,
sorption can involve either nonspecific or specific mecha-
nisms. Nonspecific interactions are exhibited by hydrophobic
compounds. Topological indices have given good results in
modeling homologous series of compounds. The size and
branching, accounted for by the topological indices, may
affect the mobility of the contaminant physically in the humic
matrix. Specific interactions of soil sorption exhibited by
polar compounds have been covered by the inclusion of
constitutional, electrostatic, quantum-chemical, and weighted
holistic invariant molecular (WHIM) descriptors. More
general models resulted from incorporating descriptors for
both mechanisms of sorption. In addition, chemical reactions
may take place with the soil components, which decrease
the mobility of these compounds.

In a different approach, Winget et al.655 developed a set
of quantum mechanical solvent descriptors using SM5
solvational parametrization to characterize the organic carbon
component of soil. These descriptors were subsequently used
to develop QSPR models to be applied in partitioning of
solutes between soil and air. The combination of this set of
effective solvent descriptors with solute atomic surface
tension parameters developed for water/air and organic
solvent/air partitioning allowed for prediction of the parti-
tioning of solutes between soil and water.

5.7. Solvent Scales
Solvents form the basis of many chemical reactions and

are of fundamental importance in chemistry. Solvents influ-
ence chemical and physical processes by solvating the
substrate either through van der Waals interactions or
hydrogen bonding or by providing solvent pockets or cages
for encapsulating the substrate. The structure of both solute
and solvent play important roles in the solvation phenom-
enon. Most solvent scales are based on a model system by
recording the changes in a measurable parameter when the
solvent is changed. The model processes represent different
intermolecular interactions in the system, although no one
scale can be universal and applicable to all properties. The
empirical properties used to define solvent polarity scales
include the following: (i) equilibrium and kinetic rate
constants of chemical reactions of solutes, (ii) spectroscopic
properties of solutes in different solvents comprising absorp-
tion and fluorescence energies or vibrational translational
energies, (iii) solvation free energies of solutes, (iv) mac-
roscopic properties such as dielectric constant, dipole mo-
ment, refractive index, molecular volume, polarizability
index, etc., and (v) composite experimental parameters.
Individual solvents are rarely represented in all common
scales, and no scale covers all the common solvents. To date,
more than a hundred quantitative solvent polarity scales have
been developed based on diverse physicochemical properties

νd ) KE (14)
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Table 9. Summary of Some Important QSPR Models on log KOC
a

no. compoundsb N model descriptorsc R2 s F ref

1 nonpolar compounds 64 1� 0.96 0.27 1371 Meylan et al.656

2 nonpolar and polar organic compounds 189 1�, ∑PfN (f ) 26) 0.96 0.23 Meylan et al.656

3 heterocyclic nitrogen compounds 12 1� 0.88 0.38 74 Liao et al.657

4 heterocyclic nitrogen compounds 12 log Sw, ∆1�v 0.91 0.32 54 Liao et al.657

5 heterocyclic nitrogen compounds 12 log KOW, ∆1�v 0.87 0.38 38 Liao et al.657

6 phenylthio, phenylsulfinyl,
phenylsulfonyl

25 log k′w 0.93 0.13 320 Hong et al.658

7 phenylthio, phenylsulfinyl,
phenylsulfonyl

25 log KOW 0.83 0.21 115 Hong et al.658

8 phenylthio, phenylsulfinyl,
phenylsulfonyl

25 3�v
c(Ph), 0�(R4), 0�(Ph), 3�c(Ph) 0.91 0.15 63 Hong et al.658

9 diverse organic compounds 72 log KOW 0.91 Baker et al.659

10 POPs (log KOW > 5) 18 log KOW(calc) 0.29 0.59 Baker et al.660

11 POPs (log KOW > 5) 18 1�, 4�v
C, 3�C 0.81 0.30 25 Baker et al.661

12 diverse organic compounds 66 log KOW(calc), V+, BMAX 0.84 0.38 Müller662

14 diverse set of reference substances 21 log k′w (cyanopropyl phase) 0.91 Szabo et al.663

15 diverse set of reference substances 21 log k′w (humic acid phase) 0.93 Szabo et al.663

16 PCBs 48 RRT 0.92 0.16 Hansen et al.664

17 PCBs 48 TSA 0.92 0.17 Hansen et al.664

18 PCOCs 65 log KOW 0.86 0.44 386 Dai et al.665

19 PCOCs 65 µ, Ehomo, qH+, q-, TE 0.85 0.46 69 Dai et al.665

20 benzaldehydes (AM1) 14 µ, qH+, 3�pc, 2�v
p 0.91 0.10 35 Dai et al.666

21 benzaldehydes (PM3) 14 µ, qH+, 3�pc, 2�v
p 0.92 0.10 40 Dai et al.666

22 benzaldehydes (AM1) 14 µ, qH+, q- 0.86 0.13 28 Dai et al.666

23 benzaldehydes (PM3) 14 µ, qH+, q- 0.82 0.16 19 Dai et al.666

24 heterogeneous pesticides 143 MW, nBr, nNO, nHA, ICEN, MAXDP 0.82 0.38 106 Gramatica et al.667

25 carbamates 29 nO, nX, nNO, 
C 0.95 0.17 110 Gramatica et al.667

26 organophosphates 28 IE
deg, IC, MAXDP, η1u, Ts 0.89 0.23 35 Gramatica et al.667

27 phenylureas 43 MW, nCl, nCIT, λ1v, η2s 0.91 0.12 76 Gramatica et al.667

29 diverse organic compounds 592 74 fragment constants, 24 structural
factors

0.97 0.37 Tao et al.668

30 diverse organic compounds 592 1�v, 2�, 4�c, 6�, ∑Pj (j ) 17) 0.77 0.44 Tao et al.668

31 diverse organic compounds 387 5σ moments 0.71 0.62d 189 Klamt et al.669

32 substituted aromatic compounds 28 log KOW 0.61 0.22 43 Wu et al.670

33 substituted aromatic compounds 28 2�v, ∆5�v 0.69 0.20 31 Wu et al.670

34 substituted aromatic compounds 28 MW, πd, V-, EN 0.95 0.08 128 Wu et al.670

35 substituted aromatic compounds 27 log KOW 0.79 0.08 92 Wu et al.671

36 substituted aromatic compounds 27 log KOW, 3�c 0.88 0.06 91 Wu et al.671

37 substituted aromatic compounds 27 R, πd, O 0.86 0.07 48 Wu et al.671

38 diverse organic pesticides 143 1�, 11 E-state indices (Si) 0.82 0.37 51 Huuskonen672

39 diverse organic compounds 403 log S (calc) 0.80 0.51 1622 Huuskonen673

40 diverse organic compounds 403 log S (calc), HBA, NAR, MW, Iacid 0.85 0.44 451 Huuskonen673

41 diverse organic compounds 403 log KOW (calc) 0.79 0.52 1475 Huuskonen673

42 diverse organic compounds 403 log KOW (calc), NAR, ROT, MW, Iacid 0.86 0.43 491 Huuskonen673

43 organic compounds containing C, H,
N, O, S

82 Nφ, MW, NN, NO, NS 0.94 0.33 228 Delgado et al.674

44 halogenated benzenes, anilines, and
phenols

28 R, �, VCSE, 3�C, OV 0.96 0.07 129 Wei et al.675

45 substituted anilines and phenols 42 log KOW, Ehomo, R, µ (MLR) 0.78 0.37 32 Liu and Yu676

46 substituted anilines and phenols 42 log KOW, Ehomo, Elumo, qN, qO, MW, R,
µ (ANN)

0.87 0.28 Liu and Yu676

47 diverse organic compounds 68 log KOW, η [AM1] 0.76 0.44 101 Kahn et al.677

48 diverse organic compounds 344 log KOW, PNSA-1, η, Pπ-π
max 0.76 0.41 266 Kahn et al.677

49 POPs 32 Lu index, 5 DAI indices 0.90 0.23 40 Lu et al.678

50 heterogeneous pesticides 143 µ10Dip, µ15Dip, µ4Dist, µ1H, µ5H, µ7P
Dip 10

0.84 0.37 117 Gonzalez et al.679

51 chlorinated phenols 19 log KOC (exp) using cubic spline
polynomials (in xRf�) on the
oriented edges Rf� of the Hasse
diagram

0.88 0.26 Ivanciuc et al.680

52 diverse organic compounds 550 VED1, nHAcc, MAXDP, CIC0 0.82 0.54 Gramatica et al.681

53 diverse organic compounds 550 consensus modele 0.82 0.42f Gramatica et al.681

54 heterogeneous pesticides 143 NCONN, ATS2p, O-058, nP, Ds, Vm 0.90 0.29 203 Duchowicz et al.682

55 polycyclic aromatic hydrocarbons 20 3 PLS PCs (using nine DFT level
descriptors)

0.99 0.14 890 Lu et al.683

a N, number of compounds used to develop a model; R2, correlation coefficient; s, standard deviation; F, F-test value. b PCOCs, polychlorinated organic compounds;
POPs, persistent organic pollutants; PCBs, polychlorinated biphenyls. c PfN and Pj, structural fragment contribution factors (Pf) for polar structural fragments; N,
number of times the fragment occurs in the structure; n�, molecular connectivity indices; Sw, water solubility; ∆1�v, nondisperse force factor; KOW, n-octanol/water
partition coefficient; V+, potential of the positive atomic charges; BMAX, maximum charge difference between connected atoms; k′, HPLC capacity factor; Sester and
Salkyl, group electrotopological indices; RRT, gas chromatographic relative retention time; TSA, molecular total surface area; µ, dipole moment; Ehomo, energy of
the highest occupied molecular orbital; qH+, most positive net atomic charge on hydrogen atom; q-, largest negative atomic charge on an atom; TE, total energy;
MW, molecular weight; nBr, number of Br atoms; nNO, number of NO bonds or groups; nHA, number of hydrogen bond acceptor atoms; ICEN, centric information
index; MAXDP, maximum positive intrinsic state difference; Ts, global WHIM descriptor of molecular size; nO, nCl, and nX, numbers of O, Cl, and halogen
atoms; 
C, eccentric connectivity index; IE

deg, mean information content on vertex degree equality; IC, information content on multigraph; η1u, λ1v, and η2s,
directional WHIM descriptors; nCIT, number of total rings; DELS, index, mainly related to total charge transfer in the molecule; σ moments, real solvents σ-moment
descriptors; E-state indices (Si), electrotopological-state indices; V-, potential of the negative atomic charges; EN, electronegativity;R, polarizability; π*,R/Connolly
accessible volume; O, ovality of a molecule; HBA, number of N and O atoms; NAR, number of aromatic rings; Iacid, indicator variable for ionization of carboxylic
acids; ROT, number of rotational bonds; Nφ, number of benzene rings; NN, NO, and NS, numbers of N, O, and S atoms; R and �, hydrogen bond (acceptor and
donor) terms; VCSE, Connolly solvent-excluded volume (Å3); OV, ovality; qN and qO, net negative atomic charges on atoms N and O; NCONN, number of urea
derivatives; ATS2p, Broto-Moreau autocorrelation of a topological structureslag 2/weighted by atomic polarizabilities; O-058, number of O-fragments; nP,
number of phosphorous atoms; Ds, D total accessibility index/weighted by atomic electrotopological states; Vm, V total size index/weighted by atomic mass;
VED1, eigenvector coefficient sum from distance matrix; CIC0, complementary information content index46,47 with neighborhood symmetry of 0 order; µnX (X
) Dip, Dist, H, P), where n is the order of the spectral moment and X is the type of bond weight; Dip, dipole moment; Dist, standard distance; H, hydrophobicity;
P, polarizability; PLS PC, partial least squares principal components; DFT, density functional theory. d rms ) root-mean-square. e Averages of predicted log KOC

values from 10 models. f Mean residual.
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of solutes and solvent, including chemical reactivity, spec-
troscopic properties, directly measured energies, and free
energies of solvation and others. Several analyses of solvent
scales together with reviews and discussions on the subject
have been published.684-686

In an early study, Katritzky et al.687 obtained a multilinear
QSPR model (R2 ) 0.936) for the nonspecific solvent polarity
scale (S′) containing 67 solvents on the basis of three
calculated molecular descriptors. Their later study,684 cor-
related 45 different solvent scales, which contained data for
a total of 350 solvents with theoretical molecular descriptors.
The resulting QSPR equations for the different scales gave
considerable insight into both the nature of the scales and
the nature of the solvents. A review on quantitative measures
of solvent polarity includes an overview of solvent scales.685

A recent study686 reports the data for 127 solvent scale values
containing data for a total of 774 different solvents. QSPR
models were developed for all the 127 scales based on
molecular descriptors calculated using CODESSA PRO
software. The descriptors include constitutional, geometrical,
topological, charge-related, quantum chemical, and thermo-
dynamical types derived solely from molecular structure
which do not require the knowledge of experimental data.
The BMLR algorithm was used to build QSPR models with
up to five descriptors, based on the size of the data set of
each scale. The 127 solvent scales are categorized based on
experimental techniques used for the measurement scales as
follows: (i) spectroscopic (67), (ii) equilibrium (17), and (iii)
kinetic measurements (4). The remaining 39 solvent scales
were grouped into class (iv): other measurements. The QSPR
model statistics with respect to the solvent scales are listed
in Table 10.

The QSPR model equations developed for the 127 solvent
scales contain a total of 168 different descriptors. The 168
individual descriptors included in the 127 QSPR models
comprise (i) 10 constitutional (applied 14 times), (ii) 2
geometrical (applied 3 times), (iii) 29 quantum chemical
(applied 135 times), (iv) 22 topological (applied 47 times),
(v) 13 thermodynamical (applied 23 times), and (vi) 92
electrostatic and charged partial surface area descriptors
(applied 203 times). Altogether, the molecular descriptors
were applied 425 times.

As shown in Table 10, most of the QSPR models are
characterized by statistically good correlation coefficients.
The R2 values for 127 models range from 0.726 to 0.999;
18 models have R2 < 0.800. The ranges for the 127 solvent
scales predicted using the proposed models indicate that 26
solvent scales have predicted values within the experimental
range for 774 solvents. For 101 solvent scales, the predicted
range of values is at most 20% outside the experimental range
values.

A good fit of a model mostly depends on the quality of
the experimental measurements used in the development of
the solvent scales. The authors used solvents having wide
structural variability, including molecules without carbon
atoms (water, ammonia, hydrazine, and hydrogen sulfide)
and molecules without hydrogen atoms such as carbon
tetrachloride, and the overall statistical quality of QSPR
models for different solvent scales showed results that ranged
from satisfactory to excellent. The predicted value for water
for solvent scale (Z) using model 29 is 94.8, which fits well
with the experimental value of 94.6. A classification approach
for these solvents and solvent scales based on the above
models was attempted by using PCA.686

5.8. Surfactant Properties
5.8.1. Critical Micelle Concentrations

Surfactants are amphiphilic molecules, that is, that contain
a nonpolar segment, “tail,” and a polar segment, “head” (see
Figure 10c). Under specific conditions, the presence of these
two substructural features causes aggregation: when the
surfactant concentration is low, the molecules exist as
individual entities, but when the concentration increases, the
molecules tend to form aggregates.

In aqueous solution, the hydrophobic tails of the surfactant
associate, leaving the hydrophilic heads exposed to the
solvent. The simplest of such aggregates, having ap-
proximately spherical shape, are called micelles. In nonpolar
solvents, the hydrophilic segments are usually poorly sol-
vated. As a result, the heads will form the interior of the
aggregates, while the hydrophobic segments surrounding the
polar core will be responsible for the solubility.688 The
structures formed are therefore called “reverse micelles”.

The transition from premicellar to micellar solutions occurs
at a concentration called the critical micelle concentration
(CMC). It was found that, at the CMC, many important
properties of the surfactant solution, such as surface tension,
interfacial tension, conductivity, osmotic pressure, detergency,
emulsification, foaming, and so on, change sharply.689-691

Therefore, CMC can be regarded as one of the most useful
quantities for characterizing surfactants and can be correlated
with many industrially important properties. For example, to
perform micellar electrokinetic chromatography (MEKC) and
micellar liquid chromatography (MLC), a surfactant solution
at a concentration higher than the CMC must be used as a
separation solution; thus, the CMC is an essential factor in the
experiment.692

The first attempts to determine the CMC theoretically
occurred more than 50 years ago. Based on a vast amount
of experimental data concerning the CMC of surfactants,
many empirical equations relating the CMC to the various
structural units in surfactants were obtained.693 In 1976,
Rosen reported a linear relationship (eq 15) between the
logarithm of the CMC and the number of alkane carbon
atoms, n, in a homologous series.694

where A and B are empirical regression coefficients. In 1984,
Becher695 published a similar relationship for a series of linear
alkylethoxylate surfactants. It connects log CMC and the
carbon number, n, on one hand, and the ethylene oxide
number, m, on the other. Ravey et al.696 improved the
correlation by including a nonlinear term in the form of a
product of the alkane carbon number and the ethylene oxide
number, nm (eq 16):

More recently, thermodynamic treatments have been used
to describe the phase behavior of surfactant solutions in an
attempt to predict the CMC.697,698 The thermodynamic models
most commonly used are the phase separation model and
the mass action model.699 The phase separation model
represents micellization as an equilibrium between two
pseudophases: the micelles and the monomers in solution.
The CMC can be calculated through the standard free energy
of micellization. This simple model allows qualitative

log CMC ) A - Bn (15)

log CMC ) A + Bn + Cm + Dnm (16)
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Table 10. QSPR Models for the Solvent Scales Obtained by Katritzky et al.a

no. solvent scale physical background of solvent scale N R2 s

1 AN acceptor number, derived from 31P NMR of triethylphosphine oxide in different
solvents

52 0.903 5.648

2 B basicity from stretching frequency of CH3OD in different solvents 71 0.808 32.66
3 BCo ratio of the fluorescence intensities of bands I and III of the vibronic spectra of

benzo(R)coronene
25 0.929 0.075

4 BKT calculated from the difference of the longest wavelength band in the UV-vis spectra
measured for p-nitroaniline and N,N-diethyl-p-nitroaniline

44 0.788 0.135

5 BPe relative band intensities(I/III) for benzo[ghi]perylene fluorescence spectra 25 0.902 0.103
6 Co relative band intensities(I/III) for coronene fluorescence spectra 25 0.967 0.050
7 Cu-λmax maximum absorption band of Cu(tmen)(acac)(solv) 36 0.851 13.81
8 DCo ratio of the fluorescence intensities of bands I and IV of the vibronic spectra of

dibenzo[R,j]coronene
23 0.908 0.076

9 DS donor strengthsdecrease in symmetric stretching frequency of Hg2Br2, between the
gas phase and solutions

56 0.768 7.481

10 E(NR) Nile red transition energy 82 0.829 1.424
11 E*MLCT solvent dependence of the metal to ligand charge transfer absorption maxima of

W(CO)4 with 1,10-phenanthroline
33 0.941 3.569

12 ECT(A) CT spectra of W(CO)4 complexes with TCNE: E*MLCT (cm-1) ) 3000 (cm-1) ×
ECT(π) + 12360 (cm-1)

28 0.823 0.132

13 EB
N energy of N f π* transition in the 2,2,6,6-tetramethylpiperidine N-oxyl spectrum 52 0.951 0.047

14 ECT(A) UV charge transfer absorption maxima of tetra-n-hexylammonium iodide
trinitrobenzene

23 0.922 0.684

15 ET(30) molar electronic transition energy of dissolved negatively solvatochromic pyridinium
N-phenolate betaine dye

335 0.826 2.917

16 ET(N) molar electronic transition energy of dissolved negatively solvatochromic pyridinium
N-phenolate betaine dye

335 0.821 0.092

17 ET
SO UV/vis spectra of N,N-(dimethyl)thiobenzamide-S-oxide 35 0.965 0.544

18 G infrared vibration shift of hydrogen bonding 21 0.774 11.49
19 2J119Sn-117Sn tin-tin spin coupling constant 2J(119Sn-117Sn) of the hexaorganodistannoxanes 18 0.933 4.011
20 K equilibrium constants for the conformational mobile

(+)-trans-R-chloro-5-methylcyclohexanone
25 0.837 16.38

21 NCo ratio of the fluorescence intensities of bands I and III of the vibronic spectra of
naphtha[2,3-R]coronene

25 0.890 0.152

22 Ov relative band intensities(I/III) for ovalene fluorescence spectra 25 0.945 0.155
23 Ps bathochromic UV/vis spectral shifts of λmax of

(R-perfluoroheptyl-�,�-dicyanovinyl)aminostyrenes
107 0.844 0.911

24 Py relative band intensities I1/I3 for pyrene fluorescence spectra 93 0.839 0.144
25 Qm heat of mixing data, for mixtures of chloroform and solvents measured by infrared

spectra
19 0.764 166.8

26 SA solvent acidity, evaluated from UV/vis spectra of o-tert-butylstilbazolium betaine dye
and its nonbasic homomorph o,o′-di-tert-butylstilbazolium betaine dye

121 0.849 0.071

27 SB solvent basicity, evaluated from UV/vis spectra of 5-nitroindoline and its nonacid
homomorph 1-Me-5-nitroindoline

200 0.828 0.126

28 SPPN calculated from the UV-vis spectra of 2-(dimethylamino)-7-nitrofluorene and its
homomorph 2-fluoro-7-nitrofluorene

100 0.870 0.058

29 Z transition energies for the charge transfer band of the complex from
1-ethyl-4-methoxycarbonylpyridinium iodide

60 0.906 2.730

30 R solvatochromic parameter of solvent HBD (hydrogen-bond donor) acidity 184 0.773 0.204
31 � solvatochromic parameter of solvent HBA (hydrogen-bond acceptor) basicity 184 0.756 0.147
32 π* solvatochromic parametersindex of solvent dipolarity/polarizability, which measures

the ability of the solvent to stabilize a charge or a dipole by virtue of its dielectric
effect

216 0.751 0.145

33 π*azo bathochromic shifts of 6 azo merocyanine dyes 29 0.914 0.090
34 �R transition energy of merocyanine dye (VII) 58 0.852 1.343
35 ∫C6H5F 19F NMR shielding parameters of fluorobenzene in infinitely dilute solutions relative

to a fixed external standard (20% p-difluorobenzene in CCl4)
23 0.952 0.367

36 ∫H
P-NO2 19F NMR shielding parameters in p-nitrofluorobenzenes 29 0.846 0.394

37 ∆ difference of 19F nucleus shifts of p-fluorophenol between that in solvents relative to
that in carbon tetrachloride

54 0.770 0.267

38 ∆δCHCl3 shift of pure chloroform relative to that of chloroform in dilute solution 28 0.820 0.234
39 ∆υA perturbation of solvents on the CdO vibration band of acetophenone 27 0.856 1.388
40 ∆υD perturbation of solvents on the O-D vibration band of methanol-d 92 0.842 27.62
41 θ1K polarity of solvent, based on the PCA combined with a cross-validation technique of

solvatochromic shift data
80 0.780 0.806

42 θ2K polarizability of the solvent, based on the PCA combined with a cross-validation
technique of solvatochromic shift data

80 0.772 0.118

43 Λ maximum absorption of electronic spectra of heteroleptic molybdenum complexes 24 0.896 8.052
44 λF

MHN12 fluorescence band maxima for MHN12 20 0.861 1.517
45 π1* calculated from the frequency shifts of the electronic absorption spectra of

N,N-dimethyl-4-nitroaniline
95 0.873 0.134

46 π2* calculated from the frequency shifts of the electronic absorption spectra of
naphthalene

72 0.941 0.043

47 υCE relative IR frequency shifts for chloroethane 22 0.881 1.506
48 ∆νCI IR frequency shifts of iodine cyanide C-I bonds 66 0.726 11.46
49 ∆νOH IR frequency shifts of the phenol hydroxyl group 66 0.794 80.40
50 Cp-SCS substituent chemical shifts for the para carbon of N,N-dimethyl for the

monosubstituted (n ) 21) benzene
5 0.806 0.266

51 CTTS absorption maxima of iodide ions 16 0.941 751.2
52 H molar concentration of OH dipoles in (55.4 M) TEMPO 11 0.999 0.011
53 KqMMA quenching rate constants for the deactivation of triplet thioxanthone by methyl

methacrylate
12 0.906 8.112

54 log γKc fluorescence quenching rate constants for naphthonitrile-olefin and furan pairs 11 0.975 0.056
55 m* NMR chemical shift of free base and protonated base 9 0.949 0.043
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Table 10. Continued

no. solvent scale physical background of solvent scale N R2 s

56 pKBH+ NMR chemical shift of free base and protonated base 9 0.926 0.378
57 XX solvent induced frequency shifts of SO2 20 0.923 0.745
58 ∫N

pyrrole nitrogen NMR shieldings of pyrrole referred to neat nitromethane 13 0.924 1.282
59 δ chemical shifts of Li nucleus in different solvents 11 0.922 0.428
60 δ0

23Na chemical shifts of sodium iodide in different solvents 15 0.853 2.763
61 λA

Na maximum absorption wavenumbers for charge transfer bands of Na3(acpy)Fe(CN)5 7 0.879 1.067
62 T vibrational cooling times of azulene by picosecond spectral study 7 0.960 2.479
63 λA

MS absorption band maxima for MS 13 0.912 0.555
64 Φf

BBVB fluorescence quantum yield of BBVB 10 0.919 0.063
65 �f

CEA fluorescence quantum yield of coelenteramide 8 0.917 0.037
66 Φ position of the n-π* transition of a set of ketones 23 0.952 0.041
67 B-2 acid-base hydrogen bond formation induced shifts of the phenol OH group

stretching frequency
113 0.798 74.36

68 CB susceptibility to covalent interaction of a base statistical from ∆H data of different
bases and acids

65 0.801 0.665

69 DH ∆G of the transfer of Na+ from solvent to reference solvent (1,2-dichloroethane) for
hard acceptors

24 0.828 7.273

70 EB susceptibility to electrostatic interaction of a base statistical from ∆H data of
different bases and acids

65 0.780 0.298

71 PA calculated from equilibrium constants for various gaseous proton-transfer reactions
with various solvents

20 0.954 2.744

72 ∆acidH calculated by measuring the difference between the solvation enthalpies of
N-methylimidazole and N-methylpyrrole along with SPP scale values

63 0.826 3.482

73 ∆Hυ experimental enthalpy of vaporization 22 0.923 707.3
74 ∆H°solv linear combination of the ∆H°solv for the four probes (pyrrole, N-methylpyrrole,

benzene, and toluene)
35 0.845 2.430

75 ε° (SVB) average equilibrium and chromatographic distribution constants on Amberlite XAD-2,
SM-2, and XAD-4

29 0.816 0.030

76 -∆H°BF3 enthalpy of complexation of solvents with BF3 in dichloromethane 76 0.812 12.00
77 µ difference between the mean of the Gibbs free energies of transfer of sodium and

potassium ions from water to a given solvent and the corresponding quantity for
silver ions divided by 100

34 0.817 0.167

78 D1 ∆G° between cis- and trans-2-isopropyl-5-methoxy-1,3-dioxane 16 0.906 0.121
79 aH calculated E(H-bond) values from the enthalpies of solvation for 7 solute-solvent

systems
13 0.972 0.055

80 log K stability constants of sodium complexes with DITHIA-18C6 6 0.892 0.396
81 Sp solvophobic parameter, calculated from the energies of solute transfer from water to

solvents
12 0.990 0.010

82 -∆SS° experimental values of entropy of solvation of electrolyte NaBr 8 0.985 1.852
83 X solubility of trans-stilbene in organic nonelectrolyte solvents 28 0.923 0.002
84 DN donor number, negative ∆H value for the 1:1 adduct formation between SbCl5 and

the solvent molecules in a dilute solution of 1,2-dichloroethane
110 0.763 6.267

85 Dπ second order rate constants for the reaction of DDM and TCNE 34 0.754 0.341
86 log kDC rate constants for decarboxylation of 3-carboxybenzisoxazoles 24 0.912 0.699
87 Rp rate constants of pyridine-catalyzed decomposition of tert-butylperoxy formate in

various solvents at 90 °C
19 0.967 7.242

88 A anion solvating tendency 54 0.944 0.066
89 Ap acidity parameter calculated from the data for the Gibbs solvation energy for the

alkali metal cations and halide ions
18 0.956 1.794

90 BB′ cation solvating tendency 55 0.772 0.160
91 Bp basicity parameter calculated from the data for the Gibbs solvation energy for the

alkali metal cations and halide ions
18 0.847 0.417

92 d dielectric constants 55 0.926 5.881
93 DC calculated from thermodynamic model of protein denaturation 22 0.948 6.481
94 E acidity derived from ET and P and Y 84 0.920 1.462
95 J expression of dielectric constant 57 0.846 0.090
96 log K solvatochromic parameter R calculated from other solvent scales 27 0.931 0.131
97 log L16 based on the logarithmic gas-liquid partition coefficient in n-hexadecane 167 0.969 0.223
98 log P partition coefficient, calculated from hydrophobic fragmental constants 104 0.950 0.578
99 M expression of refractive index 57 0.921 0.007

100 N dielectric function 57 0.847 0.094
101 P′ chromatography strength 78 0.849 0.854
102 q- electrostatic HBAB 28 0.840 0.055
103 q+ electrostatic HBDA 29 0.938 0.017
104 S derived from Kosower’s Z values, uses R for process sensitivity 46 0.896 0.042
105 S′ solvent polarity, derived from experimental observations ∆� ) PS′ + W 46 0.901 0.164
106 Vmc molecular volume 29 0.993 0.028
107 XdR selectivity parameter: reflects a composite of solvent dipolarity-polarizability,

hydrogen bond basicity, and hydrohen bond acidity
52 0.880 0.025

108 XeR selectivity parameter: reflects a composite of solvent dipolarity and solvent acidity 52 0.849 0.042
109 XnR selectivity parameter: reflects predominately solvent dipolarity, with small

contributions from hydrogen bond basicity and acidity
52 0.842 0.026

110 �d proton donor index 72 0.819 0.028
111 �e proton acceptor index 72 0.822 0.041
112 �n strong dipole 72 0.810 0.029
113 ∆G6 Å calculated energy necessary to form a cavity of appropriate size for a solute which

has a diameter 6 Å from the effective hard-sphere diameter of solvent
25 0.790 0.881

114 ∆Hacid calculated from the enthalpies of solution of two probes: N-methylimidazole and
N-methylpyrrole and relative permittivity

36 0.893 2.480

115 -∆Hf heat of formation for the hydrogen-bonded complexes between p-fluorophenol and
solvents which act as base

53 0.816 0.610

116 ε°alumina normal phase solvent eluotropic strength (ε°) using alumina adsorbent calculated
from other solvent parameters (π*, R, and �)

23 0.948 0.056
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understanding of the micellar solution, but it cannot provide
information on the size of the micelle.

With increased computational power and the development
of modern QSAR/QSPR approaches, powerful methods for
the prediction of CMC have eventually become available.
Their big advantage is that they do not require any
experimentally determined values or empirical constants.

Employing the general QSPR approach, Huibers et al.700

proposed a three-parameter QSPR model for a set of 77
nonionic surfactants (R2 ) 0.983, F ) 1433, s ) 0.177) using
only topological descriptors calculated for the hydrophobic
fragment of the surfactant molecule. The three descriptors
represent contributions from the size of the hydrophobic
group, the size of the hydrophilic group, and the structural
complexity of the hydrophobic group.

In later studies, Huibers et al. reported a three-parameter
QSPR model from 119 anionic surfactants (sulfates and
sulfonates).701 The log CMC values were found to correlate
well (R2 ) 0.940, F ) 597, s ) 0.217) with the Kier and
Hall index (zeroth order) calculated for the tails, the relative
number of the carbon atoms in the head, and the total dipole
of the molecule.

The CMC values of 46 octyl phenol and linear and
branched alkyl chain oxyethylene derivatives with different
numbers of carbon atoms in the hydrophobic groups were
studied by Kuanar et al.702 Only purely topological descrip-
tors derived from the chemical graph theory were used, and
a PCA model with R2 ) 0.993 and s ) 0.134 was proposed
to predict the CMC of nonionic surfactants.

Roberts correlated the CMC of 133 anionic surfactants
including ether sulfates and ester sulfonates with good results
(R2 ) 0.976, F ) 5360, s ) 0.12) using the hydrophobic
parameter πh for the hydrophobic domain of the surfactant
and the length of the hydrophobe.703

The QSPR treatment of 40 anionic surfactants studied by
Wang et al.704 led to a six-descriptor model with R2 ) 0.978.
The descriptors involved are as follows: the Kier and Hall
index of zeroth order KH0 calculated for the hydrophobic
fragment, the total molecular energy Etotal, the heat of
formation ∆Hf, the dipole moment D, and the energies of
frontier orbitalssELUMO and EHOMOsof the surfactants. The
same strategy was later applied to predict the logarithm of
the critical micelle concentration of 77 nonionic surfactants
in aqueous solution.705 The best QSPR model (R2 ) 0.986)
involved seven molecular descriptors: ∆Hf, D, ELUMO and
EHOMO, MW, the number of the oxygen and nitrogen atoms
(nON) of the hydrophilic fragment, and KH0 for the
hydrophobic fragment.

Li et al.706 developed a general QSPR model for 98 anionic
surfactants using the RHF ab initio method and 6-31G(d)
basis functions to optimize the molecular structures. They
reported a three-parameter regression equation with good
statistical characteristics (R2 ) 0.980, R2

cv ) 0.978, F )
1505, s ) 0.103) which involves variables such as the total
number of atoms in the hydrophobic-hydrophilic segment,
the maximum atomic charge on the carbon atom, and the
dipole moment.

Based on the simple harmonic vibration model of me-
chanic vibration theory, Ming-Hua et al.707 calculated the
inherent frequencies of 40 anionic surfactant molecules
viewed as multifreedom spring-mass vibration systems.
Based on the 2D representation of the molecular structure,
fundamental frequency (ω0), and sum-frequency (∑ωi),
QSPR models having the following general representation
(eq 17) were proposed:

All the models were characterized by correlation coefficients
R2 > 0.98 and a mean relative error less than 0.0316.

Elshafie et al.708 published a MLR model using a data set
of 50 nonionic surfactants. The best five-descriptor model
(R2 ) 0.9889, F ) 391.6, s ) 0.486) was selected. The
descriptors involved are as follows: the molecular weight,
hydrophobic/hydrophilic fragments molecular weight ratio,
polarizability, log P, and the hydration energy.

Katritzky et al.709 proposed a general QSPR model for a
wide range of sodium salts, potassium alkanecarboxylates,
and p-isooctylphenol ethoxylated phosphates. Correlation was
studied using a data set of 181 anionic surfactants of CMC
values measured at 40 °C with molecular descriptors
calculated by CODESSA PRO. A five-parameter model was
obtained involving descriptors calculated for the whole
molecule and for the hydrophobic and hydrophilic fragments
separately. The reported statistical parameters are as follows:
R2 ) 0.897, R2

cv ) 0.877, F ) 303.7, s ) 0.295.

5.8.2. Cloud Points

The cloud point is an important property of nonionic
surfactants. Below this temperature a single phase of
molecular or micellar solution exists; above it the surfactant
has reduced water solubility, and a cloudy dispersion results.
A general MLR model (R2 ) 0.937, s ) 6.5) has been
developed for estimating the cloud point of pure nonionic
surfactants of alkyl ethoxylates using only topological
descriptors.710 The set of 62 structures is composed of linear

Table 10. Continued

no. solvent scale physical background of solvent scale N R2 s

117 ε°silica normal phase solvent eluotropic strength (ε°) using silica adsorbent calculated from
other solvent parameters (π*, R, and �)

19 0.947 0.047

118 ε� covalent HBAB 29 0.873 0.004
119 Θ(∈B) expression of dielectric constants 39 0.918 0.035
120 µD dipole moments 39 0.941 0.331
121 πI polarizability index 29 0.932 0.003
122 σ1 calculated from the surface tension of hard sphere liquids 25 0.985 0.139
123 εR covalent HBDA 29 0.991 0.002
124 γSO2 experimental infinite dilution activity coefficients of SO2 17 0.835 0.061
125 δH square root of cohesive energy density 30 0.928 2.038
126 Y polarity expression of dielectric constant 66 0.921 0.023
127 P polarizability expression of refractive index 66 0.961 0.004

a Reprinted with permission from ref 686. Copyright 2005 American Chemical Society. N is the number of data points, R2 is the squared correlation
coefficient, and s is the standard deviation.

log CMC ) A0 + A1ω0 + A2∑ω1 (17)

5758 Chemical Reviews, 2010, Vol. 110, No. 10 Katritzky et al.



alkyl, branched alkyl, cyclic alkyl, and alkylphenyl ethoxy-
lates. For this set the cloud points can be estimated to an
accuracy of (6.3 °C (3.7 °C median error) using the
logarithm of the number of ethylene oxide residues and three
topological descriptors that account for the hydrophobic
domain variation. The topological descriptors model various
aspects of the hydrophobic tail structure.

5.9. Cyclodextrin Complexation Free Energies
Cyclodextrins (CDs) are cyclic oligomers of R-D-glucose

which result from the action of certain enzymes on starch.
The family includes three well-known industrially produced
memberssR-CD (six glucose units), �-CD (seven units), and
γ -CD (eight units)sas well as several other less well-known
oligosaccharides. The R-, �-, and γ-CDs, commonly referred
to as the native cyclodextrins, are crystalline, homogeneous,
nonhygroscopic substances which form cylindrical or dough-
nut-shaped molecules with their OH groups on the outside
of the molecule. CD molecules are shallow truncated cones
rather than toruses. The primary hydroxyl rim of the cavity
opening possesses a somewhat reduced diameter compared
with the secondary hydroxyl rim.

The CD exterior, containing many OH groups, is fairly
polar, whereas the interior of the cavity is nonpolar relative
to water, which is the usual external environment.711 In
principle, in aqueous solution, the slightly apolar CD cavity
is occupied by water molecules, which are energetically
unfavored (polar-apolar interaction) and can therefore be
readily substituted by appropriate ”guest molecules” which
are less polar than water. The dissolved CD is the host
molecule, and the driving force of the complex formation is
the substitution of the high-enthalpy water molecules by an
appropriate guest molecule. This host-guest property allows
CDs to be used in numerous applications in industrial,
pharmaceutical, agricultural, and other fields, including
improving the solubility and stability of drugs and selectively
binding materials that fit into the central cavity in affinity
and chromatography purification methods.712,713

Katrizky et al.714 correlated free energies of complexation
of �-cyclodextrins with molecular descriptors calculated
using CODESSA PRO, and fragment descriptors calculated
by the TRAIL program.715 A seven-parameter equation was
obtained with R2 ) 0.796, Rcv

2 ) 0.779, and s ) 1.542.
However, for a data set of 195 compounds (with exclusion
of 23 compounds), better results were obtained (R2 ) 0.943,
Rcv

2 ) 0.848, and s ) 1.65) by using 79 fragmental
descriptors. The two approaches individually and in com-
bination led to statistically stable and predictive QSPR
models.

5.10. UV Spectral Intensities
High performance liquid chromatography (HPLC) com-

bined with ultraviolet (UV) spectrophotometric detection is
applied widely in organic chemistry for analyzing reaction
products.716 UV is also considered a nearly universal detector
for druglike molecules: 85% of the structures in the MDDR
(a database of drugs and candidate drugs) contain an aromatic
group, and most of the remaining 15% contain another
chromophore. A computational method for prediction of the
relative response of organic molecules in the UV region of
spectra would therefore be of benefit to researchers.

In recent years, however, several authors have reported
the prediction of electronic absorption parameters using

quantum theory.717-726 A robust method for the calculation
of UV spectra has been the ZINDO modification727-729 of
INDO (intermediate neglect of differential overlap), which
works well with extended conjugation for many other organic
systems, excluding the systems containing nonbonded elec-
trons. Ab initio predictions of UV spectra have also been
carried out by using highly correlated methods such as
configuration interaction singles (CIS) or time dependent
density functional theory (TD-DFT)730 combined with high
order basis sets (cc-pVTZ + sp and B3LYP,731 respectively),
but these calculations require powerful computing capacity
and are very time-consuming for relatively large molecules.
Therefore, fast QSPR approaches which could be extended
to larger molecules consisting of hundreds of atoms would
possess significant advantages. It is understood that correla-
tion of UV spectra intensities in terms of extinction coef-
ficients at a certain wavelength has no sound basis in theory,
since such coefficients depend in complex ways on the
location and intensities of spectral maxima.

Only a few QSPR treatments of UV intensities have been
reported on sets of derivatized molecules based on common
chromophores.732 Fitch et al.716 and Molnar and King733

correlated UV intensities with structural descriptors.

Recently, MLR and backpropagation feed-forward ANN
approaches allowed the correlation of UV absorbance at 260
nm of a lage data set of 805 organic compounds.138 The
authors reported a correlation with R2 ) 0.692 and s ) 0.537
log unit for UV absorption intensities at 260 nm and 25 °C
in water of a set of 805 organic compounds by using five
structural descriptors calculated by CODESSA PRO software
(Figure 11). Consequently, a corresponding nonlinear model
was developed and validated using the external data. The
descriptors (square root of partial surface area (MOPAC PC)
for atom C, relative number of double bonds, HOMO-LUMO
energy gap, moments of inertia C, and average information
content order 1) involved are calculated solely from chemical
structure and possess definite physical meaning related to
the nature of the process.

Figure 11. Predicted vs experimental UV absorption intensities
at 260 nm in water. Reprinted with permission from ref 138.
Copyright 2007 Springer.
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6. Chemical Properties

6.1. Lithium Cation Basicities
The measurement of lithium cation basicities helps the

understanding of fundamental interactions implied in analyti-
cal mass spectrometry, organic synthesis, catalysis, lithium
battery electrochemistry, and cation transport through ion
channels. In general, the activity of Li cations toward ligands
controls the formation of adducts, or clusters, that can be
considered as ions “solvated” by one or more ligands. The
gas-phase lithium cation basicity (LCB) is defined as the
Gibbs free energy associated with the thermodynamic
equilibrium of eq 18.

where ∆GLi+ ) -RT ln K1 and LCB ) -∆GLi+.
Tämm et al.734 have used QSPR to study gas-phase LCBs

of 205 compounds. The BMLR (best multilinear regression)
method implemented in CODESSA PRO was used to extract
six theoretical descriptors, explaining most of the data
variance: (i) minimum net atomic charge, (ii) relative number
of S atoms, (iii) energy of the orbital lying below HOMO,
(iv) total point-charge component of the molecular dipole,
(v) total molecular surface area weighted positive surface
area, and (vi) surface charge weighted area of hydrogen-
bonding acceptor atoms. The internal leave-one-third-out
procedure was used for validation. A statistically significant
model with R2 ) 0.801, Rcv

2 ) 0.785, F ) 133.1, and s )
2.96 was reported. Charge related descriptors dominate,
confirming the electrostatic nature of the Li cation-base
interactions.

Jover et al.735 developed linear and nonlinear QSPR models
to relate the LCBs of 229 structurally diverse compounds to
calculated molecular descriptors. The best model was
obtained with ADAPT neural networks (NN). A genetic
algorithm routine using a NN fitness evaluator was applied
to a 7-5-1 architecture for the descriptor selection. A seven
descriptor model (training set of 166 and test set of 19
compounds) involving the numbers of hydrogen, oxygen, and
nitrogen atoms, the HOMO-1 energy, the total dipole of the
molecule, the total molecular electrostatic interaction divided
by the number of atoms, and the surface charge weighted
area of the hydrogen-bonding donor atoms, HDCA-2, was
reported. The statistical parameters for the training and the
test set were R2 ) 0.954, RMSE ) 6.54 and R2

test ) 0.914,
RMSE ) 8.61, respectively. Compared with high level ab
initio and DFT results, for the same compounds, the QSPR
approach showed better predictions, especially for the diverse
set of compounds.

6.2. Stability Constants
Stability constants are associated with the formation of

chemical complexes in equilibrium reactions. These constants
are a measure of the stability of complex formation, usually
obtained by the reaction mA + nB / [A]m[B]n, and are
functions of both the reactants and products. They are very
often involved in computational models for various physi-
cochemical properties of reaction products as well as
experimental assessments of such properties. Their applica-
tion in many areas of chemistry illustrates the need for
stability constant values. However, these are not always
experimentally available, and thus, QSPR can be useful for

prediction of stability constants. There are numerous QSPR
reports in the literature related to the assessment of stability
constants, and several illustrative examples are discussed
below.

Toropov and co-workers developed QSPRs for calculating
stability constants using an optimization of correlation
weights (OCW) of local graph invariants approach. Models
were derived for data sets of transition metal complexes with
ammonia or ethylene diamine736 and for different sets of
complexes of biometals (Mg2+, Ca2+, Mn2+, Ni2+, Cu2+,
Zn2+, and Co2+) with adenosine mono-, di-, and triphos-
phates.737 This optimization used molecular graphs (MG),
whose vertices were atoms and AO graphs (AOG) whose
vertices were AOs (1s, 2s, 2p, and others). It was established
that (i) the AOG-based models were more accurate than those
based on MG and that (ii) the models obtained by OCW of
the Morgan degrees of vertices of MG/AOG were more
accurate than those based on normal degrees of vertices.
Morgan degrees refer to the employment of the extended
connectivity (EC) of Morgan738 in calculation of the descrip-
tors. The extended connectivity of an atom is specified as
the sum of the connectivities of the neighboring atoms in an
iterative procedure which ends when the same atom ordering
results in two consecutive iterations.739 The statistical
characteristics of the best model (OCW of the first-order
Morgan degrees of AOG) were n ) 20, R2 ) 0.971, s )
0.28, and F ) 608 (learning sample) and n ) 20, R2 ) 0.990,
s ) 0.196, and F ) 1691 (control sample). In subsequent
work, a descriptor calculated from correlation weights of the
main quantum number, orbital quantum number, number of
electrons on the atomic orbital, and Morgan degrees of the
second-order vertices in the graph of atomic orbitals (GAO)
was proposed.740 The quality of the models was verified by
reference accesses. This approach allowed prediction of the
stability constants of the Ca2+, Cu2+, and Zn2+ complexes
with adenosine phosphate derivatives using teaching accesses
containing no complexes of these metals. The hydrogen bond
index (HBI), the global invariant of a molecular graph that
equals the number of vertices representing hydrogen and
nitrogen atoms, was considered as a measure of the capability
of a complex to form hydrogen bonds. Together with the
local graph invariants, HBI was used for the OCW QSPR
modeling of the stability of 110 biometal M2+ complexes
with R-amino acids and phosphate derivatives of adenos-
ine.741 The statistical parameters of the best model reported
were n ) 55, R2 ) 0.984, s ) 0.279, and F ) 3328 (learning
sample) and n ) 55, R2 ) 0.986, s ) 0.248, and F ) 4027
(control sample). Finally, the stabilities of 150 complexes
containing adenosine derivatives, R-amino acids, and other
biological ligands based on OCW of the nearest neighbor-
hood codes (NNC), the HBI, and the cyclicity code (CC)
were described.742 The NNC is a local topochemical invariant
of a vertex of the MG whose numerical value is a function
of the total number and the composition of vertices adjacent
to the given vertex. The CC is a global topological invariant
of the graph equal to the number of rings present in the ligand
structure. The statistical characteristics of the best model
proposed were as follows: n ) 75, R2 ) 0.949, s ) 0.457,
F ) 1337 (training sample); n ) 75, R2 ) 0.960, s ) 0.461,
F ) 1724 (test sample).

The performances of several popular modeling techniques,
associative neural networks (ANN), support vector machines
(SVM), k nearest neighbors (kNN), maximal margin linear
programming (MMLP), the radial basis function neural

B + Li+S
K1

[B - Li+] (18)
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network (RBFNN), and MLR were compared by Tetko et
al.743 A QSPR of the stability constants, log K1, for the 1:1
(metal/ligand) complexes and log�

2 for the 1:2 complexes
of the metal cations Ag+ and Eu3+ with diverse sets of
organic molecules in water at 298 K at ionic strength 0.1 M
was obtained. The methods were tested on three types of
descriptors: molecular descriptors including E-state indices,
counts of atoms determined for E-state atom types, and
substructural molecular fragments (SMF). The models were
compared using a 5-fold external cross-validation procedure.
The Wilcoxon signed-rank test was used to compare the
performance of these methods. It is a useful nonparametric
alternative to the paired t test, which is similar to the Fisher
sign test. This test assumes that there is information in the
magnitudes of the differences between paired observations,
as well as the signs.744 Estimating this test, the nonlinear
QSPR methods demonstrated a significantly better perfor-
mance than the models built using MLR analysis. However,
the averaging of several MLR models based on SMF
descriptors provided predictions as good as most of the
efficient nonlinear techniques. SVM and ANN produced the
largest number of significant models. Models based on
fragments (SMF descriptors and E-state counts) demonstrated
higher predictive ability than those based on E-state indices.
The use of SMF descriptors and E-state counts provided
similar results, whereas E-state indices lead to less significant
models. The study illustrated the difficulties of quantitative
comparison of different methods: conclusions based only on
one data set without appropriate statistical tests could be
wrong.

In a significant contribution, Solov’ev et al.745 applied the
molecular fragment contribution method to model the stabil-
ity constants (log K) of the complexes of strontium(II) with
organic ligands in water. In this work a data set of 130
ligands which were separated into different substructural
fragments based on the ISIDA approach746 were used. The
models were utilized for the generation and screening of a
combinatorial library of virtual ligands. Several good models
were derived based on the fragment descriptors ranging from
R2 ) 0.91 to 0.94. Based on these models the authors
suggested the construction of new, potentially good binders.
They concluded that OsCsCdO, NsCsCsN, NsCs
CdO, and NsCsCsO fragments largely contribute to log
K.

Recently, significant progress was reported by Ghasemi
and Saaidpour747 on the stability constants of 58 complexes
of 1,4,7,10,13-pentaoxacyclopentadecane ethers. Their best
model of five descriptors was able to correlate the experi-
mental and predicted stability constants with R2 ) 0.95. In
addition, 12 complexes were used as an external validation
set for which the prediction gave R2 ) 0.92. The model
descriptors were related to the specific charges of H atoms,
showing their importance for the interpretation of the
formation of the complexes. In addition, interactions between
C-H and C-C atom pairs and charge distributions were
indicated as important by the descriptors. The symmetry and
shape of the complexes were also accounted for by the model
parameters. The work of Ghasemi and Saaidpour clearly
demonstrates that a QSPR equation can be developed for
the interpretation of complexation processes. It should be
emphasized that a comprehensive QSPR model requires
consideration of conformational changes upon metal binding,
solvation of the coordinated ligand molecule and side chain,
or lariat effects.

There is considerable interest in the synthesis, structure,
and luminescence or magnetic resonance spectral properties
of novel binuclear compounds exhibiting electronic lan-
thanide coupling (Ln3+-Ln3+). For instance, the potential
for such couplings to produce unusual tunable electronic
behavior to generate sharper image contrasts in magnetic
resonance (MRI) and fluorescence imaging continues to
encourage interest in these compounds. Significant water
solubility and stability of some binuclear lanthanide(III)
compounds also make them attractive as biomedical agents.
For example, free Gd(III) ion is extremely toxic at the
concentrations needed for MRI studies. However, being
administered in the form of stable complexes, the metal ion
is not released while in the human body. The stabilities of
complexes are also very important for the development of
efficient separation methods for lanthanides, as separability
depends on the stability constants of the complexes. The
above-listed applications require the development of lan-
thanide chelates with carefully tailored chemical, structural,
and spectroscopic (or magnetic) properties, which in turn
can be found with the aid of QSPR studies.

Svetlitski and Karelson748 developed a QSPR model for
the stability constants, K1, of complexes between 63 different
organic ligands and 14 lanthanides with the BMLR method
implemented in CODESSA. The stability constant, K1,
measured in aqueous solutions at the ionic strength µ ) 0.1
and temperature 25 °C, is defined as in eq 19:

Models for the series involving a single metal were con-
structed using only theoretical descriptors for the ligands.
QSPR models for the series involving a constant ligand were
constructed using various physical properties of metals as
descriptors. The models contained two to four descriptors
from a variety of classes. The largest groups included
hydrogen bonding descriptors, topological indices of the
organic ligands, general electronic properties, and bonding
interactions. In addition, descriptors reflecting the geometry
and constitution of ligands and partial surface areas appeared
in the QSPR models. The frequency of the descriptors in
QSPR models indicated that bidentate complex formation
with the lanthanide ions is predominantly determined by the
hydrogen-bonding capabilities and the geometrical and even
topological aspects of the ligands. The descriptors reflecting
the charge distribution in the ligands and the related
electrostatic interactions had smaller contributions. In the case
of the correlations with the lanthanide (metal) descriptors,
the most important contribution was given by the successive
ionization potentials of the metals, that appeared altogether
42 times, of which 18 cases involved the ionization potential
of the Ln3+ ion. Another group of descriptors of substantial
importance included the heats of vaporization and fusion of
the metals. In principle, these descriptors depend on the
London forces between the metal atoms and may thus reflect
similar noncovalent interactions in the complexes. Most of
the models were characterized by R2 > 0.8 and prediction of
an external test set with R2

ext ) 0.588.
Further, a QSPR modeling of the distribution coefficient

(log D) of uranyl cations extracted by phosphoryl-containing
podands from water to 1,2-dichloroethane was reported by
Katritzky et al.749 Two different approaches were used: one
based on classical physicochemical descriptors (implemented

K1 ) [Ln Ln+3]

[Ln3+][Ln]
(19)
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in the CODESSA PRO program) and another based on
fragment descriptors (implemented in the TRAIL pro-
gram715). Taking into account the conformational flexibility
of podands, only conformationally invariant or weakly
conformationally dependent descriptors were used in the
CODESSA PRO calculations. Several robust models were
obtained from CODESSA PRO which involved its “own”
descriptors together with fragment descriptors generated by
TRAIL. Using TRAIL alone, three statistically significant
models involving sequences of atoms, bonds, or augmented
atoms were developed. The QSPR models obtained were
applied to the estimation of log D values for a virtual
combinatorial library of 2024 podands generated with the
CombiLib program. Eight of these hypothetical compounds
which span the range of log D variation for experimentally
studied molecules were then synthesized and tested experi-
mentally. Comparison of calculated and new experimental
results showed that the QSPR models successfully predicted
log D values for 7 of the 8 compounds from the “blind test”
set.

6.3. Rate Constants
6.3.1. Decarboxylation Rates

Decarboxylation involves cleavage of a C-C bond in a
carboxylate ion to produce CO2 and an organic residue
containing an unshared pair of electrons. This organic product
can be stabilized by delocalization of the electron pair. In
some cases, as in the tetramethyl guanidinium salt of
3-carboxy-6-nitrobenzisoxazole (I), the carboxylation process
is greatly influenced by the nature of the reaction environ-
ment. This phenomenon has attracted attention with respect
to applications in biological and organic synthetic fields as
well as for probing solvents and varied media such as
micelles, bilayers, macrocyclic hosts, and polymers.750 The
authors derived equations for 24 pure solvent scales (R2 )
0.870, s ) 0.73) and for 60 pure and mixed solvents (R2 )
0.904, s ) 0.60) for decarboxylation rates (log k) of I using
their own experimentally determined solvent scales. A year
later the effects of solvents on the decarboxylation rates of
I in 24 pure solvent scales was studied by Katritzky et al.751

employing the CODESSA program and using theoretical
descriptors related to the solvents. The three-parameter
correlation (R2 ) 0.909, Rcv

2 ) 0.870, F ) 66.21, s ) 0.712)
relates the log k values of the rate of decarboxylation of
6-nitrobenzisoxazole-3-carboxylates to (i) the hydrogen ac-
ceptor accessible surface area, HASA, (ii) the structural
information content (order 1), 1SIC, and (iii) the image of
the Onsager-Kirkwood solvation energy, SEOK. According
to these results, H-bonding interactions of the carboxylate
with the solvent impede the decarboxylation reaction by
stabilizing the ground state of the carboxylate ion. The rate
of the reaction also depends on branching of the solvent,
which affects the interactions of the solvent with the substrate
and/or transition state and the polarity, as revealed by the
contribution of the SEOK.. With an increase in the value of
this descriptor, the energy of activation for the decarboxy-
lation process diminishes.

6.3.2. Hydroxyl Radical Rate Constants

Volatile organic compounds (VOCs) are chemically
transformed in the troposphere by reacting with photochemi-
cally generated oxidants. The lifetimes of organic chemicals

can be calculated from the rate constant of their degradation
reaction with OH radicals, kOH, and ozone during the daytime
and NO3 radicals at night. The hydroxyl radical reacts with
practically every organic compound in the troposphere and
has been studied extensively, providing sufficient experi-
mental data for QSPR modeling. These models could help
in rapid recognition of safe or high risk organic chemicals
and be useful in planning and development of new safer
organic chemicals. Advances in the QSPR study of atmo-
spheric degradation of chemicals are quite considerable,
while modeling of biodegradability in water and soil has
produced very modest results according to the comprehensive
overview of the degradability of organic compounds by
Sabljić et al.752

Hydroxyl radical reactions include the following: (i)
hydrogen atom abstraction, (ii) addition to double and triple
bonds, (iii) addition to aromatic rings, and (iv) reactions with
nitrogen, sulfur, and phosphorus compounds. The environ-
mental importance of these degradation pathways and the
modeling methods has been reviewed and evaluated by
Güsten et al.753,754 Published prediction models on abiotic
tropospheric degradation can be grouped into (i) empirical
models, QSPRs using measured physicochemical properties,
(ii) QSPRs based on semiempirical quantum-chemical de-
scriptors, and (iii) ab initio MO calculations. Among these
models only a few were generally applicable. Meylan and
Howard755 noted two general methods for the prediction of
the tropospheric OH radical degradation rates. First, the
Atkinson’s group/fragment methodology combined with
known reaction mechanisms is implemented in US EPA’s
AOPWIN estimation software756,757 comprising 89 parameters
derived by nonlinear least-squares analyses of the kinetic
data. The total rate constant is the sum of the four reaction
pathways (i)-(iv) mentioned above. Despite the fact that the
method has no mechanistic background and has applicability
limitations, it is quite successful and not class-specific. The
other outstanding model, the so-called MOOH model, was
made by Klamt,758,759 who used the AM1 semiempirical SCF-
MO method to derive six molecular descriptors combining
MO energies and atomic charges on the reaction centers of
the molecules. A nonlinear optimization procedure was
performed to obtain regression coefficients. The obtained
system of models covers reaction pathways (i)-(iii), includ-
ing oxygen-containing compounds.759

An approach similar to Atkinson’s was used by Neeb.760

Additive group rate constants were determined for each
structural group or sites of attack. For the classes of
compounds considered in this study, only pathways (i) and
(ii) were considered important.

Gramatica, Pilutti, and Papa developed models for the
atmospheric degradation of VOCs,761 using the GA-VSS
(genetic algorithm-variable subset selection) strategy for the
selection of significant variables from a large set of structural,
topological, empirical, and WHIM (weighted holistic invari-
ant molecular) descriptors followed by an OLS (ordinary
least squares) method for model formation of OH radical
reaction rate constants, -log kOH. PCA and the Kohonen
artificial neural network (K-ANN) were used to extract
representative training (51 chemicals) and validation (94
chemicals) sets from the initial set of 326 chemicals. The
best six-descriptor model was characterized by R2 ) 0.85
for the training set and R2 ) 0.75 for the validation set. Later,
with the same variable selection methodology,762 the authors
proposed a MLR model for OH radical tropospheric degra-
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dation of 460 heterogeneous VOCs from theoretical molec-
ular descriptors. D-optimal Experimental Design and K-ANN
were applied to the original data set for splitting the data
into training and validation sets. The resulting two MLR
models involved the same descriptors (HOMO energy,
number of halogen atoms, complementary information
content index, and number of unsubstituted aromatic C
atoms) with identical R2 values of 0.828 (ntraining ) 234, ntest

) 226). Although the performance of the models was very
similar, the D-optimal design, where chemicals with higher
diversity were selected for the training set, yielded superior
models with predictive power exceeding that of the models
developed on the basis of the training set selected by K-ANN.
The authors emphasized the need for chemical domain
determination and external validation for the development
of successful predictive models.

Bakken and Jurs763 developed QSPRs using computational
artificial neural networks (ANNs) with structure-based
descriptors for the set of 57 unsaturated hydrocarbons
previously used by Medven.764 A 5-2-1 CNN produced a
rms error of 0.0705 log unit for the training set and 0.0639
log unit for an external prediction set. The residual sum of
squares for all 57 compounds was a favorable 0.234 log unit.
Additionally, a 10-7-1 ANN for a diverse set of 312
compounds produced a rms error of 0.229 log unit for the
training set and 0.254 log unit for the external validation
set. Accurate predictions over a wide range of functionalities
were demonstrated.

The same data set764 was also used by Pompe et al.,765

who developed a CODESSA MLR model for the -log kOH

using only topological descriptors. A model with statistical
parameters comparable with other QSPRs on the same data
was obtained with six descriptors and a rmsCV error of 0.119
log unit. Additionally, a regression model using a variable
connectivity index (1�f) was developed. The variable con-
nectivity index accounts for and adjusts the relative contribu-
tions of different atoms and bonds to best suit the property
studied. The model provided worse cross-validation results
with an rmsCV error of 0.16 log unit, but it enabled a
mechanistic interpretation of the reaction. The largest
contribution to the reactivity was given by the cyclic and
acyclic sp2-hybridized carbon atoms, in accord with experi-
mental findings. Since all 58 compounds contained one or
more CdC double bonds, the reactions were classified as
OH radical addition to multiple bonds. Later, higher-order
variable connectivity indices were introduced by Pompe and
Randić766 to account for the combination of positive as well
as negative relative contributions of atoms and bonds in the
construction of the QSPR/QSAR models. The superiority of
the variable connectivity index 1�f compared to the simple
and valence analogues 1� and 1�v was clearly shown with
the aid of a selected data set of 39 organic compounds
containing carbon, oxygen, and chlorine atoms with known
reaction rates with OH radicals, -log kOH. The respective
rms errors of the models were as follows: 0.62, 0.53, and
0.35. The introduction of anticonnectivity further refined the
result, rms ) 0.34. The optimization of diagonal weights of
the augmented adjacency matrix of the “anticonnectivity
model” pointed out the significant enhancing effect of oxygen
and the suppressive effect of chlorine on the overall
atmospheric reactivity of organic compounds with OH
radicalssa valuable result offering direct knowledge about
the role of the individual structural components that influence
the reactivity of the compounds.

Öberg767 outlined how validation and domain definition
can facilitate the modeling and prediction of the OH radical
reaction rates for a large database. A set of 867 theoretical
descriptors was generated from the 2D-molecular representa-
tion of the structures for compounds presented in the
Syracuse Research Corporation’s PhysProp Database to give
a QSPR model using PLS regression validated with an
external test set. The main factors of variation were attributed
to two reaction pathways, hydrogen atom abstraction and
addition to double bonds or aromatic systems. When
projected onto the PLSR model, 74% of 17,293 compounds
with similar molecular weight fell inside the applicability
domain determined by the chosen limits for the residual
standard deviation and the leverage. The predicted hydroxyl
reaction rates for 25% of these compounds were slow or
negligible, with atmospheric half-lives in the range from days
to years. The list of the persistent organic compounds was
matched against the OECD list of high production volume
chemicals (HPVC). Nearly 300 compounds were identified
as both persistent and/or in high volume production.

More recently, a new method of developing QSPR models
based on fuzzy “if-then” rules was demonstrated by Kumar
et al.768 The fundamental issues involved in QSPR studies
related to modeling errors associated with the chosen
descriptors and structure of the model were addressed. The
construction of fuzzy mappings was based on a robust
criterion that the maximum possible value of energy-gain
from modeling errors to the identification errors was
minimum. Such an identification method would guarantee
that small modeling errors would not lead to large identifica-
tion errors. Simulation studies and three QSAR modeling
examples provided by the authors illustrated that, in the
presence of modeling errors, the proposed fuzzy modeling
was more suitable than the Bayesian regularized ANNs. For
the example of predicting the rate constant for OH radical
tropospheric degradation, -log kOH, the data set of 460
heterogeneous organic compounds and the model descriptors
taken from Gramatica et al.762 provided a model with rms
errors of 0.43 and 0.37 for the training and test sets,
respectively (Table 11). This result outperformed both
reference models, the Bayesian ANNs and the model by
Gramatica et al.

6.3.3. Methyl Radical Addition Rate Constants

Methyl radical reactions are important in many fields of
chemistry. Environmentally, methyl radicals are formed in
the atmosphere during the reaction of methane with OH
radicals and subsequently determine the fate of other
chemicals found in the atmosphere. Methane is considered
the second most important gas after carbon dioxide that
affects the ozone layer.

Methyl radical addition rate constants were modeled by
Bakken and Jurs769 using 191 small organic compounds.
Topological, geometrical, electronic (using PM3 Hamilto-
nian), or combined descriptors were used to encode substrate
information. The best results were achieved by nonlinear
feature selection combined with CNN model development.
Alkynes, allenes, and heterocycles were absent from the data
set. A seven-descriptor CNN was built for 172 compounds.
The reported rms error for the training set was 0.424 log
unit, and the rms error for the prediction set was 0.409 log
unit. The error of the predictions of the proposed model was
on the order of the experimental error.

Quantitative Correlations of Physical and Chemical Properties Chemical Reviews, 2010, Vol. 110, No. 10 5763



A reliable QSPR model for estimation of the rate constants
of radical addition reactions was developed by Heberger and
Borosy.770 Carbon-centered radicals with very different
features and vinyl-type alkenes with diverse substituents
served as reactants. The data set of 178 compounds was split
into training (114), monitoring (56), and validation (19)
subsets. Linear and nonlinear methods were applied, and the
rms error of prediction (RMSEP) was used to compare the
predictive power of the methods used. The six important
descriptors comprised the following: reaction heat (HR),
singlet-triplet energy gap of alkenes (ETR), ionization
potential of radicals (IPR), ionization potential of alkenes
(IPA), electron affinity of radicals (EAR), and electron
affinity of alkenes (EAA). The model exhibited strong
nonlinearity: the RMSEP of 0.37 log unit for the logarithm
of the rate constant achieved by ANN for the 19 members
of the validation set was 70% lower than the RMSEP of the
MLR and PCR linear methods.

6.4. Acid Dissociation Constants
The dissociation or acidity constant, Ka, is extremely

important in organic chemistry, equilibrium studies, and drug
design. Ka measures the propensity of a compound to donate
a proton (eq 20):

where HA + H2O S A- + H3O+

For convenience, the acidity scale is expressed as pKa, where
pKa ) -log Ka. At a pH above the pKa of an acid, the
conjugate base predominates, and inversely, at a pH below
the pKa, the conjugate acid predominates. Inductive and
resonance effects, which are summarized in the Hammett
equation, affect the pKa’s of organic acids. Structural effects,
such as cis-trans isomerism, may also alter the stability of
the conjugate acid. The pKa value of a compound influences
reactivity and spectral properties (color) and is of general
importance in chemistry because ionization of a compound
alters its physical behavior and macro properties such as
solubility and lipophilicity. In biochemistry the pKa values
of proteins and amino acid side chains are of major
importance for the activity of enzymes and the stability of
proteins. Ionization increases solubility in water but decreases
lipophilicity. In drug development, the concentration of a
compound in the blood can be adjusted by the pKa of an
ionizable group. The affinity of a drug molecule to a target
or the efficiency of RNA as an active transport carrier may
be critically dependent on the degree of dissociation. Hence,
pKa is important to the activity and/or toxicity of drugs and
it is useful to develop broadly applicable and accurate models
for the prediction of the pKa values in the early phases of
drug design. Following are the main contributions for the
QSPR modeling of pKa of organic compounds, including
druglike compounds, using theoretical molecular descriptors.
The models’ technical and statistical parameters are given
in Table 12.

In 1981, Perrin et al.771 published a book on pKa prediction,
which is widely used but is impractical for large systems,
especially for high-throughput virtual screening applications.
A number of useful fragment methods are available as

Table 11. QSPR Models for Prediction of the Gas-Phase OH Radical Rate Constants (-log kOH)a

no. compounds Nb methods nd, model descriptors R2 s Rvalid
2 svalid ref

1 update for oxygenated
compounds: ketones,
alcohols, ethers, carbonic
acids, and aldehydes

93 nonlinear optimization
procedure

AM1 semiempirical MO
calculation parameters

1.6 Klamt759

2 unsaturated hydrocarbons 57 PLS 18 (8 empirical, 8
quantum-chemical (AM1),
and 2 constitutional), 3 latent
variables

0.86 Medven764

MLR, stepwise 3 (EHOMO (AM1), dipole
moment (Dip), log P)

0.82 0.125

3 unsaturated hydrocarbons 52 (5) CNN 5-2-1 5 (topological) 0.071c 0.064c Bakken and Jurs763

diverse compounds 281 (31) CNN 10-7-1 10 (8 topological, 2 electronic
(PM3))

0.23c 0.25c

4 VOCs 51 (94) GA, OLS 6 (structural, topological,
empirical, and WHIM
descriptors)

0.85 0.47 0.75 Gramatica761

5 alkanes, alkenes, and
oxygenated hydrocarbons

250 GAP 21 group rate constants Neeb760

6 unsaturated acyclic and cyclic
organic compounds (C3...C10)

53 (5) MLR 6 (topological) 0.88 0.12c 0.097c Pompe765

7 heterogeneous VOCs 234 (226) GA, MLR 4 (HOMO energy, number of
halogen atoms,
complementary information
content index, number of
unsubstituted aromatic C
atoms)

0.83 0.47 0.83 0.48 Gramatica762

8 diverse VOCs 495 (238) PLSR 333 2D descriptors (using
SMILES)

0.91 0.39 0.84 0.50 Öberg767

9 organic compounds containing
C, O, and Cl atoms

39 1� 0.24 0.62c Pompe766

1�V 0.45 0.53c

1�f 0.76 0.35c

1�a 0.77 0.34c

MLR 6 (topological and
constitutional)

0.93 0.21c

10 diverse VOCs (Gramatica
2004)

460 fuzzy mapping “if-then” rules 0.43c 0.37c Kumar768

Bayesian NNs 0.45c 0.38c

a VOCs, volatile organic compounds; OLS, ordinary least squares; WHIM, weighted holistic invariant molecular. b The number of validation set
compounds is shown in parentheses. c rms error.

Ka )
[H3O

+][A-]

[HA]
(20)

(acid + base < )> conjugate base + conjugate acid)
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Table 12. QSPR Models for Prediction of pKa

no. compounds Na methods model descriptors, nd R2
s

(log unit) Rvalid
2

svalid

(log unit) ref

1 pure extractants 15 MLR 2 molecular connectivity
indices

0.933 Shan et al.801

2 carboxylic acids,
substituted phenols,
and alcohols

48 MLR number of carbon atoms (NC)
and group philicity

0.991 0.49 Giri et al.800

3 diverse organic
compounds incl.
drugs

(123) computer program
SPARC

contributions of the structural
components while based on
perturbation models

0.92 0.78b Lee et al.796

diverse organic
compounds

(537) computer program
SPARC

contributions of the structural
components while based on
perturbation models

0.80 1.05b Lee et al.796

4 acidic nitrogen
compounds

421 PLS 8 components 0.97 0.41b Milletti et al.794

six-membered
heteroaromatics

947 PLS 10 components 0.93 0.60b Milletti et al.794

druglike compounds (28) PLS 14 models out of the system
of 33 models

0.85 0.90b Milletti et al.794

5 carboxylic acids 31 MLR variable anticonnectivity index
of order one

0.47b Pompe and Randić793

6 phenols in 10 solvents 199 (55) CNN solute, 5 quantum chemical;
solvent, H-bond donation
ability and dipole moment

0.982 0.71b 0.977 0.83b Jover et al.798

7 benzoic acids in 9
solvents

379 (98) CNN solute, 5 quantum chemical;
solvent, H-bond donation
ability and cohesive energy

0.998 0.21b 0.998 0.21b Jover et al.799

8 aromatic acid
derivatives

74 (33) MLR 3 quantum chemical and
geometrical

0.988 0.27b Ghasemi et al.795

9 phenols 106 (22) MLR 6 molecular descriptors 0.913 0.523b 0.895 0.562b Habibi-Yangjeh et al.792

phenols 106 (22) ANN 6 molecular descriptors 0.999 0.036b 0.999 0.011b Habibi-Yangjeh et al.792

10 substituted
imidazolines

23 PLS 2 latent variables 0.995 Popelier and Smith791

imidazoles 15 PLS 3 latent variables 0.989
11 neutral and basic drugs 59 (15) HM, MLR 5 constitutional, topological,

geometrical, electrostatic,
quantum chemical

0.78 0.48b 0.48 0.99b Luan et al.789

neutral and basic drugs 59 (15) HM, RBFNN 5 constitutional, topological,
geometrical, electrostatic,
quantum chemical

0.785 0.458b 0.543 0.613b Luan et al.789

12 carboxylic acids 40 QTMS descriptors of the AIM theory 0.920 Chaudry and Popelier790

anilines 36 descriptors of the AIM theory 0.974 Chaudry and Popelier790

phenols 19 descriptors of the AIM theory 0.952 Chaudry and Popelier790

13 imidazol-1-ylalcanoic
acid derivatives

15 (3) MLR 2 quantum chemical, 1
constitutional

0.978 0.1 Soriano et al.788

14 carboxylic acids 826 MLR 21 operational atomic
contributions

0.941 0.104 Cherkasov et al.787

protonated amines 802 MLR 19 operational atomic
contributions

0.933 0.182 Cherkasov et al.787

15 diverse organic acids 645 PLS tree structured fingerprint
describing the ionizing
centers: 24 atom types and 9
group types

0.93 Xing et al.578

diverse organic bases 384 PLS tree structured fingerprint
describing the ionizing
centers: 24 atom types and 9
group types

0.92 Xing et al.578

organic compounds
(validation)

(25) PLS tree structured fingerprint
describing the ionizing
centers: 24 atom types and 9
group types

0.95 0.7 Xing et al.578

16 diverse organic acids 625 PLS tree structured fingerprint
describing the ionizing
centers: 24 atom types and 9
group types; 22 atom types
and 11 group types

0.98 0.405 Xing et al.785

diverse organic bases 412 PLS tree structured fingerprint
describing the ionizing
centers: 24 atom types and 9
group types; 22 atom types
and 11 group types

0.99 0.302 Xing et al.785

organic compounds
(validation)

(25) PLS tree structured fingerprint
describing the ionizing
centers: 24 atom types and 9
group types; 22 atom types
and 11 group types

0.99 0.40 Xing et al.785

17 phenols 175 MLR 4 semiempirical quantum
mechanical descriptors
derived from frontier
electron theory

0.93 0.599 Tehan et al.783

aromatic carboxylic
acids

99 MLR 4 semiempirical quantum
mechanical descriptors
derived from frontier
electron theory

0.87 0.357 Tehan et al.783

aliphatic carboxylic
acids

185 MLR 4 semiempirical quantum
mechanical descriptors
derived from frontier
electron theory

0.69 0.564 Tehan et al.783

18 heterocyclic
compounds

150 MLR 3 semiempirical quantum
mechanical descriptors
derived from frontier
electron theory

0.72 1.168 Tehan et al.784
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commercial software772-774 but are limited in scope. Because
every prediction is based on a congeneric parent structure,
pKa’s can only be predicted reliably for compounds very
similar to those in the training set, making it difficult to get
good estimates for novel structures. The latter is especially
true when predicting pKa values for compounds of pharma-
ceutical interest. Ab initio and semiempirical quantum
mechanics calculations have been used extensively,775,776 and
pKa values can be calculated formally from statistical
thermodynamics, based on numerical solutions of the
Poisson-Boltzmann equation.777-779 Methods have also been
developed for the prediction of pKa of amino acid residues
in proteins in which the environmental effects are particularly
important and difficult to estimate.780

Grüber and Buss781 used MNDO and AM1 levels of QM
theory on PCMODEL-optimized geometries to calculate the
pKa-values of some 190 phenols and aromatic and aliphatic
carboxylic acids. The best correlation encompassing all
compounds employed four descriptors and had R2 ) 0.900.

Citra776 correlated partial atomic charges and bond orders
with the pKa of sets of phenols, carboxylic acids, and
alcohols. A three-descriptor equation with R2 ) 0.84 for 56
acids was reported. Citra carried out a conformational
analysis on the molecular structures and used descriptors that
were averaged over all low energy conformations.

Gross et al.782 have developed single-parameter correlations
of five ab initio quantum chemical indices for anilines to
study the effects of substituents on the dissociation constant,
pKa. Among the calculated quantities, the best representation
of the aniline pKa’s was produced by the minimum average
local ionization energy on the molecular surface. The good
performance of the five calculated descriptors as compared
to Hammett constants in their ability to estimate pKa proved
that quantum chemical parameters can be applied instead of
empirical ones in modeling and in providing a fundamental
understanding of the property variations. Tehan et al.783

proposed QSPRs for the pKa of molecules or fragments with
relevance to the pharmaceutical industry (extracted from the
Physprop database, http://www.syrres.com) using semiem-
pirical quantum mechanical descriptors. These descriptors
were calculated on and around the atoms of the functional
group of interest. Electrophilic superdelocalizability (SE) was
highly correlated with pKa, and additionally, SE was able to
distinguish between the meta-/para- or ortho-substituted
acids or phenols. The pKa values of the nitrogen containing
functional groups of amines, anilines, and nitrogen containing
heterocyclic compounds were also successfully modeled with
the same descriptors.784

Xing et al.578 predicted pKa values for both acids and bases
in water using a novel tree-structured fingerprint method
describing the neighborhood of ionizing centers by construct-
ing a count vector based on the total number of atoms and
groups of each type at each level originating from the center.
The results of the initial approach were considerably
improved (from R2 ) 0.93 to 0.98 for acids, and from 0.92
to 0.99 for bases, respectively) by individual treatment of
the chemical classes using the same approach.785 Polanski
et al.786 predicted pKa for benzoic and alkanoic acids by
coupled ANN-PLS based on the comparison of molecular
surfaces.

Cherkasov et al.787 presented a new method to quantify
the substituent effect, called “3D correlation analysis” (3D-
CAN), based on empirical inductive and steric constants,
taking into account the 3D structure of substituents. New
formulas allowing calculation of pKa values for 826 car-
boxylic acids and 802 protonated amines were established,
and the possibility of interpretation of the physical nature
of the substituent effects within the framework of 3D-CAN
was presented.

Soriano et al.788 estimated the pKa values of different series
of imidazol-1-ylalkanoic acid derivatives using combinations
of semiempirical or ab initio methods and two semiempirical
solvation models SM2 and SM5.4. None of these procedures
was able to describe the zwitterionic structure of the
carboxylic monoacid series as their most stable form
determined experimentally in solution. A comparison of the
theoretical and experimental pKa values showed rms differ-
ences ranging from 1.43 to 3.04 pKa units. As an alternative
strategy, a QSPR model for pKa determination is described
based on two quantum chemical descriptors, the natural
atomic charge on the N3 proton (qH

+) and the frontier orbital
energy (εL), and the number of ester groups in the molecule
n. The model reproduced the experimental values of imida-
zol-1-ylalkanoic compounds within 0.1 pKa unit.

Luan et al.789 developed QSPR models to predict the pKa

values of a set of 74 neutral and basic drugs via linear and
nonlinear methods. The CODESSA approach was used to
derive descriptors and to build linear models; RBFNN (radial
basis function neural networks) was used to generate the
nonlinear models. Both models used the same descriptors
selected by the heuristic method: the descriptors accounted
for the relative nitrogen content and polarizability of the
compounds related to the ease of protonation of the mole-
cules. The results were rated as “fair” in view of the
complexity and relatively large size of the drug molecules.

Table 12. Continued

no. compounds Na methods model descriptors, nd R2
s

(log unit) Rvalid
2

svalid

(log unit) ref

anilines and amines 132 linear 1 (electrophilic
superdelocalizability)

0.94 0.985 Tehan et al.784

19 anilines 36 linear 1 (Hammett constant) 0.940 0.310 Gross et al.782

anilines 36 linear 1 (minimum molecular surface
local ionization energy)

0.949 0.285 Gross et al.782

20 carboxylic acids 56 (9) MLR 3 (partial charges on O and H
atoms, O-H bond order)

0.84 0.95 Citra776

benzoic acids 31 (10) MLR 3 (partial charges on O and H
atoms, O-H bond order)

0.89 0.85 Citra776

phenols 101 (15) MLR 3 (partial charges on O and H
atoms, O-H bond order)

0.96 0.97 Citra776

alcohols 27 MLR 3 (partial charges on O and H
atoms, O-H bond order)

0.89 Citra776

21 phenols and aromatic
and aliphatic
carboxylic acids

190 MLR 4 MNDO and AM1 calculated
descriptors

0.90 Grüber and Buss781

a Training set (prediction set): QTMS, quantum topological molecular similarity; AIM, atoms in molecules; HM, heuristic method. b rms error.
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Multivariate models for three classes of compounds were
developed by means of the quantum topological molecular
similarity (QTMS) tool, using descriptors from the “atoms
in molecules” (AIM) theory.790 Correlations obtained out-
performed the Hammett and other traditional parameters. The
results of QTMS were demonstrated by the following R2/q2

values: 0.920/0.891 (acids), 0.974/0.953 (anilines), and 0.952/
0.884 (phenols). Popelier and Smith791 used the QTMS
method based on quantum chemical topology (QCT) to
define electronic descriptors drawn from modern ab initio
wave functions of geometry-optimized molecules enabled
by the present computing power. Seven data sets of medicinal
interest were investigated including pKa values for a set of
substituted imidazolines and imidazoles. A PLS analysis in
conjunction with a GA delivered excellent models that were
also able to highlight the important bonds responsible for
the observed property.

Habibi-Yangjeh et al.792 used MLR and ANNs to model
the pKa values of 106 phenols with diverse chemical
structures. Six molecular descriptors [the polarizability term
(πI), the most positive charge of the acidic hydrogen atom
(q+), the molecular weight (MW), the most negative charge
of the phenolic oxygen atom (q-), the hydrogen-bond
accepting ability (εB), and the partial-charge weighted
topological electronic (PCWTE) descriptor] of the MLR
model were used as inputs. External validation of the models
with 22 compounds produced R2 0.895 and rms 0.562 for
the MLR model compared with the values of 0.99996 and
0.0114, respectively, for the ANN model.

Pompe and Randić793 optimized a variable anticonnectivity
topological index for the modeling of pKa values. The
variable anticonnectivity index of order one showed superior
modeling capabilities compared to the ordinary variable
connectivity index of the same order because it accounts for
the combination of positive and negative contributions in
the molecular descriptor.

Milletti et al.794 presented a new computational method
for pKa prediction of organic compounds using descriptors
generated by the program GRID, based on molecular
interaction fields precomputed on a set of molecular frag-
ments. The new method was trained and cross-validated by
using a diverse data set of 24,617 pKa values. The results
were presented for a class of 421 acidic nitrogen compounds
(rms ) 0.41, R2 ) 0.97, q2 ) 0.87) and for a class of 947
six-membered N-heterocyclic bases (rms ) 0.60, R2 ) 0.93,
q2 ) 0.85). External validation with 28 novel compounds
with nine different ionizable groups and 39 experimentally
determined pKa values demonstrated good predictive ability
(R2 ) 0.85, rms ) 0.90). For the validation set of the 28
druglike compounds, the method gave better results when
compared with the ACD/pKa program (R2 ) 0.76, rms )
1.36).

A very simple, interpretable model, based on MLR and
quantum chemical descriptors for pKa’s of aromatic acid
derivatives, was developed by Ghasemi et al.795 Three
significant descriptors, related to the partial charges at each
atom in the Oδ--Hδ+ bond (pchgHδ+ and pchgOδ-) and the
change in the bond length of O-H (bl(O-H)), were
identified. A model with low prediction error and high
correlation coefficient was obtained based on 74 molecules
as a training set. The average relative error of the prediction
set of 33 compounds was lower than 1% (rms ) 0.27), and
R2 was 0.988. The pKa values of aromatic acids generally

decreased with increasing positive partial charges on the
acidic hydrogen atom.

Lee et al.796 used the computer program SPARC797

(SPARC Performs Automated Reasoning in Chemistry) to
predict the ionization state of drugs. This program has been
developed based on the physical chemistry of reactivity
models and applied successfully to predict numerous physical
properties as well as chemical reactivity parameters. SPARC
predicts both macroscopic and microscopic pKa values strictly
from molecular structure. A high correlation (R2 ) 0.92)
between experimental and the SPARC calculated pKa values
was obtained with rms of 0.78 log unit for a set of 123
compounds, including many known drugs. A set of 537
compounds from the Pfizer internal data set gave R2 ) 0.80
and rms ) 1.05.

Jover et al.798 utilized CNNs to compose a multicomponent
system to correlate the pKa values of 94 phenols in protic
(water, methanol, isopropanol, and tert-butanol) and aprotic
(DMSO, N,N-dimethylformamide (DMF), acetonitrile, ni-
tromethane, acetone, and N,N-dimethylacetamide (DMA))
solvents. The phenols were characterized by the CODESSA
descriptors, and the solvents by several physical properties
and the most used multiparametric polarity solvent scales.
The final model contained seven descriptors: five of them
belonging to the solutes and the remaining two to the
solvents. RMSE and (R2) of 0.71 (0.982) for the training,
0.83 (0.977) for the prediction, and 0.95 (0.975) for the
validation sets were reported. The same methodology was
used to derive a QSPR model for the pKa prediction of
benzoic acids in different solvents.799 The system studied
contained 519 pKa values corresponding to 136 benzoic acids
determined in water and 8 organic solvents. The training,
prediction, and cross-validation sets all had the same R2

(0.998) and RMSE (0.21). The descriptors of both models
were clearly related to interactions playing a role in the
dissociation process.

Giri et al.800 used a simple descriptor, the number of carbon
(NC)/non-hydrogenic (NNH) atoms present in a molecule, for
the development of QSPR models for several useful proper-
ties, including pKa values of carboxylic acids, phenols,
alcohols, etc. High statistical parameters (R2 ) 0.991, R2

cv

) 0.990, s ) 0.490, n ) 48) suggest the significance of this
descriptor, which improves the two-parameter QSPR models
with electrophilicity or its local variant as an additional
descriptor. The simplicity of this descriptor is seen as a great
advantage of these models.

Shan et al.801 established QSPR models for the pKa of some
pure extractants and the apparent basicity (pKa,B) of three
typical mixture solvents: trioctylamine (TOA)/hexane, TOA/
1-octanol, and TOA/methyl isobutyl ketone (MIBK). The
models include the concentration of extractant in the solvent
and three kinds of molecular connectivity indices of extrac-
tant and diluent. The calculated values from the models of
the pure extractant and mixture solvents showed good
consistency with experimental values.

Despite the numerous advances in high-throughput mea-
surements, in silico determination is still the fastest and
cheapest way of obtaining an estimate of pKa. This research
demonstrates the high priority of developing prediction
models for pKa for applications in chemical technology and
in medicinal chemistry.
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6.5. Thermal Decomposition Temperatures of
Nonlinear Optical (NLO) Chromophores

Organic second-order nonlinear optical (NLO) materials
have potential applications in telecommunications, optical
information processing, computing, and data storage. These
materials are typically made from chromophores, small
organic molecules, incorporated into polymer matrices, and
poled with an electric or optical field to achieve a noncen-
trosymmetric dipole alignment. There are several qualities
of the NLO chromophores that need to be optimized for
producing a successful industrial material. To ensure the
stability of the material during fabrication, the thermal
decomposition temperature, Td, should be over 573 K. QSPR
model development can be helpful in prediction of the
qualities of the potential NLO chromophores.

In attempts to predict Td of compounds, Bicerano802

developed a QSPR for a set of 140 polymers, with 21
descriptors involved. Using a molar thermal decomposition
function Yd (Yd ) TdM, where M is the molecular weight) as
a dependent variable, an R2 value of 0.998 was reported.
Xu et al.803 studied QSPRs between theoretical descriptors
representing the molecular structures and Td for a diverse
set of 90 s-order nonlinear optical (NLO) chromophores in
the temperature range 473-685 K. A seven-parameter MLR
model was developed for the molar thermal decomposition
function Yd, following the same methodology as in the
previous work, with R2 ) 0.964 and SEE ) 14.01 K. The
mean relative error for the prediction of Td was 4.46%.
The model descriptors supported the physical origin of Td,
expressing size, shape, resonances, and transfers of intramo-
lecular charge. Cross-validation of the model indicated good
stability of the description of the property by the selected
descriptors; however, no external validation was performed.

6.6. Chain Transfer Constants
A transfer constant is a dimensionless quantity defined as

the ratio between the rate constant for the formation of the
unreactive polymer and the rate constant for the propagation
reaction. Understanding chain transfer clarifies our under-
standing of the microkinetic processes in polymerization
reactions. During polymer synthesis, chain-transfer reactions
modulate molecular weight and broaden the molecular weight
distribution, which in turn determines polymer processability.
Thus, control of these macromolecular features is required
when high molecular weight polymers are not suitable for a
given application. During the last 15 years, considerable
interest has developed in the use of chain-transfer agents to
produce “living polymers”. Knowledge of chain-transfer rate
constants which can be obtained with the aid of QSPR
estimation models assists the industrial scale-up of polym-
erization processes using kinetic modeling techniques and
reduces the number of iterative adjustments required to
achieve optimum (co)polymerization.

Ignatz-Hoover et al.804 deduced quantitative structure-
reactivity relationships (QSRR) for kinetic chain-transfer
constants, log CX, for 90 agents for styrene polymerization
at 60 °C. A five-parameter correlation with R2 ) 0.818, Rcv

2

) 0.795, and s ) 0.818 logarithmic unit was derived. Despite
the heterogeneity of the radical size within the systems
studied and differences in the experimental testing conditions,
a good correlation was obtained. The descriptors involved
in the correlations were consistent with the proposed mech-
anism of chain-transfer reactions. The model allows the

prediction of the transfer constants for a variety of additives
(transfer agents) and helps in the theoretical understanding
of free-radical polymerization kinetics.

6.7. Flash Points and Autoignition Temperatures
The flash point, Tf, is the lowest temperature at which the

vapor of a volatile liquid can form an ignitable mixture with
air. The combustible substance reacts with oxygen in the air
in an exothermic oxidation reaction giving a momentary
flash. The flash point of compounds is important in terms of
both practical uses (i.e., combustion chemistry) and safety
(i.e., handling and transporting of the compounds in bulk
quantities). Numerous methods have been developed to
estimate flash points for pure liquids as well as mixtures.805

Many of these methods involve different mathematical
equations using empirical parameters, such as boiling points,
critical temperature, vapor pressure, and activity coefficients.
QSPR models utilizing theoretical molecular descriptors have
the advantage of not needing data measurements for predic-
tion of the property. The most significant publications on
QSPR modeling of the flash points are reviewed and
summarized in Table 13 below.

Zhokhova et al.806 constructed several MLR and ANN
models for the Tf of different sets of diverse organic
compounds using structural fragment descriptors. The best
result was obtained with the ANNs using 25 fragmental
descriptors on a set of 398 compounds: R2 ) 0.959 and rmspr

) 14.6 °C. The MLR model using the same data was
comparable to the ANN model with R2 ) 0.956 and rmspr

) 15.8 °C.
Gramatica et al.807 studied solvent properties in order to

provide a tool for selecting a suitable solvent. A QSPR for
the flash points of 136 organic solvents was developed
starting from a large descriptor pool. Using the genetic
algorithms-variable subset selection (GA-VSS) procedure,
a six-parameter model with R2 ) 0.813 and QLOO

2 ) 78.7
was obtained. A data set of 153 esters was studied for the
prediction of the basic physicochemical properties.808 The
MLR approach was based on a variety of theoretical
molecular descriptors, selected by the GA-VSS. The best
linear QSPR models were internally and externally validated
(QLMO50%

2 ) 0.78-0.93; QEXT
2 ) 0.88-0.94). The leverage

approach was used to define the model’s domain of ap-
plicability. The predictions of the class-specific QSPR models
were compared with the US-EPIWIN prediction and showed
better performance.

Tetteh et al.809 developed radial basis function (RBF) ANN
models for the simultaneous estimation of flash (Tf) and
boiling points (Tb) based on 25 molecular functional groups
and their first-order molecular connectivity indices. The RBF
networks were trained by the orthogonal least squares (OLS)
learning algorithm. After dividing the initial set of 400
compounds into training (134), validation (133), and test
(133) subsets, the average absolute errors were obtained and
compared. For the validation and test sets, they ranged from
10 to 12 °C and 11 to 14 °C for Tf and Tb, respectively, in
agreement with the experimental value of about 10 °C. This
work is an extension of one of the authors’ previous
studies,810 where a predictive MLR model with the same
parameters on the whole data set of 400 compounds (R2 )
0.94, s ) 13.5 °C) was reported.

A QSPR study of the flash points of a diverse set of 271
compounds by Katritzky et al.811 provided a general three-
parameter QSPR model (R2 ) 0.9020, R2

cv ) 0.8985, s )
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16.1 K) using a large pool of 3D theoretical descriptors
retrieved from AM1 calculations. The use of the experimental
boiling point as a descriptor in the equation resulted in R2

) 0.9529. When using calculated boiling points, the R2 of
the model was found to be 0.925. The other two parameters
involved in the last equation were (i) the difference between
the positively charged partial surface area and the negatively
charged partial surface area, DPSA, and (ii) the minimum
electron attraction for a C atom, Ee-n,C. DPSA is responsible
for the polar interactions between molecules, whereas the
quantum-chemical descriptor Ee-n,C can be related to the
reactivity of any carbon atom within the molecule in a
combustion reaction. The results were validated by a leave-
many-out procedure. In their earlier work,216 a modest six-
parameter correlation (R2 ) 0.837, Rcv

2 ) 0.832, s ) 16.7
K) was obtained for the flash points of 121 pyridines. The
descriptors employed in this equation indicated the impor-
tance of molecular bulk and hydrogen-bonding effects in
determining flash points.

Catoire and Naudet812 developed a unique empirical
equation for estimating Tf for most classes of organic liquids.
Fifty-nine carbon-containing compounds were selected for
the establishment of the equation considering the reliability
of the measurements, wide range of temperature (-50 to
133.9 °C), and structural variations. Three parameters were
used: the normal boiling point, the standard enthalpy of
vaporization at 298.15 K, and the number of carbon atoms
in the molecule. In the case of missing experimental data
for the two empirical parameters, several accurate theoretical
estimation methods were suggested. The developed equation
reproduced Tf with a mean absolute deviation of 2.9 °C and
a maximum absolute error of 7 °C. The equation was
extensively tested on diverse organic compounds including
those containing N, O, S, Si, P, Sn, Ni, B, Ge, and halogen
atoms. Polyhalogenated compounds (that also include igni-
tion inhibitors) were detected as outliers in this model.

Stefanis et al.813 developed a group-contribution method
that uses two kinds of groups: first-order groups (104) that
describe the basic molecular structure of the compounds and
second-order groups that are based on the theory of the
conjugated operators and improve the accuracy of the
predictions by providing more structural information to
distinguish the isomers. New groups were defined to ensure
that the molecular structure of any compound of biochemical
interest, including complex aromatic, multiring, and hetero-
cyclic compounds, could be described and the reliability of
the predictions was enhanced. The flash points were esti-
mated with R2 ) 0.967, s ) 14.7 K, and a mean error of
3.27%.

A particular challenge is the estimation of the properties of
mixtures because a simple mixing rule will not work when
interactions among the mixture components are strong. A review
of flash point estimates for mixtures is given in Vidal et al.805

as well as the discussion of special cases in which the flash
point of a mixture is below the flash points of the individual
components.814 Estimates for the binary mixtures, such as
methanol-water and ethanol-water, were presented and
compared with experimental values as well as those for the
flammable mixtures of octane-ethanol and octane-1-
butanol, which exhibit the minimum flash point behavior
(MFPB). It was demonstrated that the UNIFAC group
contribution method480 can be used to reproduce the flash
points of binary mixtures when the liquid mixture is nonideal.
Catoire et al. extended their equation for pure compounds812

to binary and tertiary mixtures,815,816 and they were also able
to reproduce the MFPB phenomenon measured experimentally.

Pan et al.817 constructed models of the relationships
between the structures and flash points of 92 alkanes by
means of ANNs using the group bond contribution method.
Group bonds which contain information of both the group
property and the group connectivity in the molecules were
used as molecular descriptors. The data set of 92 alkanes

Table 13. QSPRs for the Prediction of Flash Points (Tf) of Volatile Compounds

no. compounds Nb methodsa model descriptors, nd R2 s (°C) Rvalid
2 svalid (°C) ref

1 diverse compounds 400 MLR 25 atomic and group
increments, first-order
molecular connectivity index

0.94 13.5 Suzuki et al.810

2 diverse compounds 267 (133) RBF-ANN 25 (atomic and group
increments, first-order
molecular connectivity
index)

0.96c 10.8 0.92 14.3 Tetteh et al.809

0.96d 10.1 0.92 14.0 Tetteh et al.809

3 diversely substituted pyridines 126 MLR 6 theoretical descriptors 0.76 Murugan et al.215

4 diversely substituted pyridines 121 MLR 6 theoretical descriptors 0.84 16.7 K Katritzky et al.216

5 diverse compounds 271 MLR 3 (theoretical descriptors,
AM1)

0.90 16.1 K Katritzky et al.811

3 (descrs and exp boiling
point)

0.95 11.2 K Katritzky et al.811

3 (descrs and calc boiling
point)

0.92 14.2 K Katritzky et al.811

6 diverse compounds 398 MLR 25 (the number of atoms or
molecular fragments)

0.96 11.4 Zhokhova et al.806

398 NN 0.96
7 organic solvents 136 GA-VSS MLR 6 (structural, empirical,

topological, 3D-WHIM)
0.81 Gramatica et al.807

8 diverse organic compounds
(-50 to 133.9 °C)

59 (∼600) empirical equation 3 (normal boiling point,
standard enthalpy of
vaporization at 298.15 K,
number of C atoms)e

2.9f 3.4 Catoire and Naudet812

9 diverse compounds including
bioactive

418 group contribution first- (104) and second-order
group contributions

0.97 14.7 K Stefanis et al.813

10 alkanes 92 (15) BPANN 9 (group bond contributions) 0.98 3.8 Kf 0.98 4.8 Kf Pan et al.817

MLR 0.97 6.27 K 6.1 Kf Pan et al.817

11 diverse organic compounds 758 MLR 4 (boiling point (calc),
electrostatic, topological)

0.849 18.9 K Katritzky et al.818

ANN 0.878 12.6 K Katritzky et al.818

a RBF-ANN, radial basis function artificial neural networks b In parentheses is the number of validation set compounds. c Single output values.
d Double output values. e The normal boiling point and standard enthalpy of vaporization can be calculated using a number of theoretical models.
f Mean absolute deviation.
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was randomly divided into a training set (62), a validation
set (15), and a testing set (15). The optimal condition of the
ANN was obtained by adjusting various parameters by trial-
and-error. Simulated with the final optimum BP ANN
[9-5-1], the results showed that the predicted flash points
were in good agreement with the experimental data, with
the average absolute deviation of 4.8 K and the rms error of
6.86, which were shown to be superior to those of the MLR
method.

Katritzky et al.818 published an update of their previous
QSPR study of flash points811 using an extended data set of
758 organic compounds collected from the literature pub-
lished after 2004. Both MLR (see Figure 12) and ANN
models were developed using geometrical, topological,
quantum mechanical, and electronic descriptors calculated
by the CODESSA PRO software. The best model obtained
had a good representation of the property (with an average
error of 13.9 K) with only four molecular descriptors: boiling
point, BP (calculated from a QSPR model), HA dependent
HDCA-1/TMSA (Zefirov PC), HASA-1/TMSA (Zefirov PC)
(all), and the relative number of triple bonds. The descriptors
appearing in this model were primarily related to electrostatic
and hydrogen bonding interactions as well as to the molecular
shape. The ANN model gave better statistical characteristics:
R2 ) 0.878 and average error of 12.6 K based on only
slightly different decriptors. The developed QSPR model
could be used for the prediction of flash points for a wide
range of organic compounds.

Autoignition temperature (AIT) is another important fire
safety parameter in handling bulk chemicals. It is defined as
the lowest temperature at which a substance in air will ignite
in the absence of a spark or flame. Autoignition occurs when
the rate of heat evolved by this reaction is greater than the
rate at which heat is lost to the surroundings. AIT is also
crucial to the performance of internal combustion engines
through the phenomenon of engine knock. The autoignition
mechanism proceeds by a free radical reaction and the
stability of the free radical intermediates determines the ease
of oxidation. The structural features that affect AIT are the
chain length, degree of unsaturation, degree of branching,
aromaticity, and the functional groups of the compounds.
QSPR models of AIT based on calculated molecular descrip-
tors are discussed below and summarized in Table 14.

Egolf and Jurs819 correlated chemical structural features
of 312 diverse hydrocarbons, alcohols, and esters to their
AIT. The general model for the whole set displayed moderate
statistical parameters (R2 ) 0.726), and therefore, the
chemical classes were approached separately. They observed
a shift of the regression line on the observed vs calculated
AIT plot and suggested two different mechanisms for the
AITs of hydrocarbons at high (633-848 K) and low
(475-610 K) temperatures. The final models for the four
groups defined had R2 in the range 0.88-0.95, and s between
12 and 24 K. The above MLR models contained from four
to eight molecular descriptors. Structural features such as
radical stability, steric strain, and molecular rigidity were
found to be important for modeling autoignition. The study
was repeated with an enlarged pool of descriptors820 on a
data set consisting of 327 hydrocarbons, halohydrocarbons,
and oxygen, sulfur, and nitrogen containing compounds.
MLR and CNN were used to develop predictive AIT models.
Both GA and SA routines were used to select subsets of
descriptors. The models developed for several subsets of the
data had predictive ability in the range of experimental error
(rmse e35 °C).

Tetteh et al.821 used both radial basis function (RBF) and
back-propagation (BP) ANNs to model AIT with six
descriptors, two empirical and four structural. The RBF and
BP ANNs led to satisfactory models for the training set (n
) 85, R2 ) 0.953 and 0.945, respectively) but performed
only moderately for the validation set (n ) 148, R2 ) 0.834
and 0.837 with average errors of prediction of 30.1 and 29.9
°C, respectively). In a subsequent study, Tetteh et al.822

enlarged their data set to 232 organic compounds and used
biharmonic spline interpolation to optimize both the spread
parameter and the number of neurons in the hidden layer of
the RBF ANNs. Comparable results with their previous study
were reported for the training (R2 ) 0.826, error 30.2 °C, n
) 78), validation (R2 ) 0.833, error 30.1 °C, n ) 77), and
test (R2 ) 0.861, error 32.9 °C, n ) 77) sets, respectively.

Yoshida and Funatsu823 proposed a new hybrid method
that combines the genetic algorithm (GA) and the QPLS
method (GA-QPLS) acting as a nonlinear analogue of PLS
to model AIT using the training set data of 85 compounds
of Tetteh et al.821 The hybrid method led to a significant
improvement over the conventional QPLS method.

Kim et al.824 used the genetic functional approximation
(GFA) to find the best MLR model for AIT within 72
molecular descriptors for a set of 200 diverse organic
compounds. Nine topological, functional group counts, and
AM1 based charge related descriptors for a training set of
157 data points were used. For the training set R2 ) 0.920,
and the RMSE was 25.9 °C. The corresponding statistical
parameters for the test set (43 data points) were R2 ) 0.910
and RMSE ) 29.0 °C.

Albahri and George825 used ANNs to identify structural
groups within the framework of the structural group contri-
bution (SGC) method that could best represent AIT for about
490 substances. The chosen 58 single and binary structural
groups were derived from the Ambrose, Joback, and Chueh-
Swanson definitions of group contributions and modified to
account for the location of the functional groups in the
molecule. The proposed method developed using 470
compounds performed excellently in the applicability range
of the model, predicting the AIT of 20 pure components with
an average error of 2.6% and R2 of 0.98.

Figure 12. Experimental vs predicted flash points according to
the MLR model. Reprinted with permission from ref 818. Copyright
2007 Elsevier B. V.

5770 Chemical Reviews, 2010, Vol. 110, No. 10 Katritzky et al.



T
ab

le
14

.
Q

SP
R

s
fo

r
th

e
P

re
di

ct
io

n
of

A
ut

oi
gn

it
io

n
T

em
pe

ra
tu

re
s

(A
IT

)
of

V
ol

at
ile

C
om

po
un

ds

no
.

co
m

po
un

ds
N

(n
va

lid
)a

m
et

ho
ds

b
m

od
el

de
sc

ri
pt

or
s,

n d
R

2
s

(°
C

)
R

2 va
lid

s v
al

id
(°

C
)

re
f

1
al

l
co

m
po

un
ds

31
2

M
L

R
0.

73
59

K
E

go
lf

an
d

Ju
rs

81
9

hy
dr

oc
ar

bo
ns

(l
ow

A
IT

)
58

8
(t

op
ol

og
ic

al
,

A
M

1)
0.

95
12

K
hy

dr
oc

ar
bo

ns
(h

ig
h

A
IT

)
46

5
(t

op
ol

og
ic

al
,

A
M

1)
0.

88
16

K
al

co
ho

ls
28

4
(t

op
ol

og
ic

al
)

0.
94

24
K

es
te

rs
25

4
(t

op
ol

og
ic

al
,

ge
om

,
A

M
1)

0.
93

20
K

2
al

l
co

m
po

un
ds

30
0

G
A

,
SA

,
qu

as
i-

N
ew

to
n

B
FG

S
N

N
s,

M
L

R
11

58
.5

c
M

itc
he

ll
an

d
Ju

rs
82

0

hy
dr

oc
ar

bo
ns

(l
ow

A
IT

)
47

(5
)

5
(t

op
ol

,
el

ec
tr

on
ic

)
8.

77
c

5.
11

c

hy
dr

oc
ar

bo
ns

(h
ig

h
A

IT
)

46
(5

)
6

(t
op

ol
,

el
ec

tr
on

ic
)

18
.5

c
15

.7
c

ni
tr

og
en

co
m

po
un

ds
36

(4
)

6
(t

op
ol

,
el

ec
tr

on
ic

)
34

.9
c

28
.2

c

ox
yg

en
/s

ul
fu

r
co

m
po

un
ds

13
2

(4
)

7
(t

op
ol

,
ge

om
,

el
ec

tr
on

ic
)

30
.8

c
32

.5
c

al
co

ho
l/e

th
er

co
m

po
un

ds
67

(x
)

6
(t

op
ol

,
ge

om
)

19
.6

c
20

.0
c

3
di

ve
rs

e
or

ga
ni

c
co

m
po

un
ds

(A
IT

17
0.

..6
30

°C
)

25
0

M
L

R
6

(c
ri

tic
al

pr
es

su
re

,
pa

ra
ch

or
,

at
om

ic
ch

ar
ge

s,
0t

h
or

de
r

co
nn

ec
tiv

ity
in

de
x,

gr
ou

p
in

di
ca

to
rs

)

0.
89

34
.8

f
Su

zu
ki

82
8

4
di

ve
rs

e
or

ga
ni

c
co

m
po

un
ds

85
(1

48
)

R
B

F
N

N
6

(2
em

pi
ri

ca
l,

2
th

eo
re

tic
al

,
2

in
di

ca
to

r
va

ri
ab

le
s)

0.
95

17
d

0.
83

30
d

T
et

te
h

et
al

.82
1

B
P

N
N

0.
95

18
d

0.
84

30
d

5
di

ve
rs

e
or

ga
ni

c
co

m
po

un
ds

85
G

A
-Q

PL
S

6
(2

em
pi

ri
ca

l,
2

th
eo

re
tic

al
,

2
in

di
ca

to
r

va
ri

ab
le

s)
0.

95
23

.7
Y

os
hi

da
an

d
Fu

na
ts

u82
3

6
di

ve
rs

e
or

ga
ni

c
co

m
po

un
ds

23
2

(7
7)

R
B

F
N

N
6

(2
em

pi
ri

ca
l,

2
th

eo
re

tic
al

,
2

in
di

ca
to

r
va

ri
ab

le
s)

0.
83

30
.2

0.
86

32
.9

T
et

te
h

et
al

.82
2

7
di

ve
rs

e
or

ga
ni

c
co

m
po

un
ds

15
7

(4
3)

G
FA

,
M

L
R

9
(t

op
ol

og
ic

al
,

sp
ac

ia
l,

A
M

1)
0.

92
25

.9
0.

91
e

29
.0

e
K

im
et

al
.82

4

8
di

ve
rs

e
or

ga
ni

c
co

m
po

un
ds

47
0

(2
0)

SG
C

,
A

N
N

58
si

ng
le

an
d

bi
na

ry
st

ru
ct

ur
al

gr
ou

ps
0.

98
17

.7
f

0.
98

17
.8

f
A

lb
ah

ri
an

d
G

eo
rg

e82
5

9
hy

dr
oc

ar
bo

ns
11

8
(4

2)
B

P
N

N
16

at
om

-t
yp

e
E

-s
ta

te
in

di
ce

s
0.

97
4

17
.5

c
0.

90
6

31
.1

c
Pa

n
et

al
.82

6

10
al

ka
ne

s
50

(1
0)

SV
M

6
at

om
-t

yp
e

E
-s

ta
te

in
di

ce
s

0.
96

8
16

.4
c

0.
96

8
17

.7
c

Pa
n

et
al

.82
7

or
ga

ni
c

co
m

po
un

ds
14

2
(9

0)
6

(c
ri

tic
al

pr
es

su
re

,
pa

ra
ch

or
,

at
om

ic
ch

ar
ge

s,
0t

h
or

de
r

co
nn

ec
tiv

ity
in

de
x,

gr
ou

p
in

di
ca

to
rs

)

0.
92

7
29

.8
c

0.
90

8
31

.0
c

11
di

ve
rs

e
or

ga
ni

c
co

m
po

un
ds

44
6

(9
0)

G
A

,
SV

M
9

(t
op

ol
,

in
di

ca
to

r,
ch

ar
ge

)
0.

90
1

33
.2

c
0.

87
4

36
.9

c
Pa

n
et

al
.82

9

(A
IT

17
0.

..6
80

°C
)

M
L

R
0.

86
9

38
.0

c
0.

85
6

39
.9

c

a
N

,n
um

be
r

of
al

lc
om

po
un

ds
.b

G
A

,g
en

et
ic

al
go

ri
th

m
s;

SA
,s

im
ul

at
ed

an
ne

al
in

g;
B

FG
S,

B
ro

yd
en
-

Fl
et

ch
er
-

G
ol

df
ar

b-
Sh

an
no

;G
FA

,g
en

et
ic

fu
nc

tio
na

la
pp

ro
xi

m
at

io
n;

SG
C

,s
tr

uc
tu

ra
lg

ro
up

co
nt

ri
bu

tio
n;

Q
PL

S,
qu

ad
ra

tic
pa

rt
ia

l
le

as
t

sq
ua

re
s;

SV
M

,
su

pp
or

t
ve

ct
or

m
ac

hi
ne

.
c
rm

s
er

ro
r.

d
A

ve
ra

ge
er

ro
r

of
pr

ed
ic

tio
n.

e
V

al
id

at
io

n
se

t
w

as
us

ed
fo

r
ch

oo
si

ng
th

e
m

od
el

.
f
A

A
D

,
av

er
ag

e
ab

so
lu

te
de

vi
at

io
n.

Quantitative Correlations of Physical and Chemical Properties Chemical Reviews, 2010, Vol. 110, No. 10 5771



More recently, Pan et al. performed a series of QSPR
studies on modeling AIT. They constructed a BPNN
[16-8-1] model to predict the AIT of 118 hydrocarbons
using atom-type E-state indices as molecular descriptors
which combine together both electronic and topological
characteristics of the molecules.826 The predicted AIT values
were in good agreement with the experimental data, with
the average absolute error being 21.6 and the rms error being
31.09 °C for the testing set. The same research team
conducted another study for the development of QSPR
models for predicting AIT of organic compounds.827 In this
study, the calibration and predictive ability of support vector
machines (SVM) were investigated using two different data
sets (from the latest Internet databases) and compared with
those of MLR and BPNN. The first data set involved 50
saturated hydrocarbons, whose structural characteristics were
encoded by atom-type E-state indices as molecular descrip-
tors, while the second one comprised of a total of 142 organic
compounds described by both the physicochemical param-
eters and molecular descriptors as previously employed by
Suzuki.828 The results showed that, for both data sets, the
performances of the SVM models were comparable or
superior to those of MLR and BPNN, especially in external
predictive ability. In a following study, Pan et al.829 combined
SVM with GA-PLS as the variable selection method on a
large pool of calculated molecular descriptors, including
topological, charge, and geometric descriptors. The leave-
one-out cross-validation was used to determine the optimal
values for the SVM parameters. The resulting model showed
the prediction ability, with the rms error being 36.86 for the
external validation set of 90 compounds (20% of the data
set), which is within the range of the experimental error of
the AIT measurements. The information contained in the
selected descriptors by the GA-PLS suggests that AIT of
organic compounds can be reasonably explained by their
electrostatic and steric effects.

The proposed model829 together with that of Albahri et
al.825 can be pointed out as good alternatives to the
experimental measurements of AIT, being applicable for a
wide range of organic compounds using only the information
which can be derived directly from the molecular structure.

6.8. Octane and Cetane Numbers
Octane number (ON) or octane rating (OR) is a figure

representing the resistance of gasoline to premature autoi-
gnition when exposed to heat and pressure in the combustion
chamber of an internal-combustion engine. Such autoignition
is wasteful of energy in the fuel and potentially damaging
to the engine, indicated by knocking noises that occur as
the engine operates. ON is numerically equal to the percent-
age of isooctane by volume in a mixture of isooctane and
normal heptane in the given gasoline. Research and motor
octane numbers (RON and MON) constitute the main quality
characteristics of gasoline, providing a sensitive indication
of the antiknocking behavior of the fuel. The higher the
octane number, the better the gasoline resists detonation and
the smoother the engine runs. During the past decade, the
increase in the compression ratio of motor vehicle engines
led to higher requirements in the octane rating of the fuels.
Additionally, restrictions in using octane number improvers
encouraged the refineries to utilize algorithms for the
prediction of the octane rating of gasoline blends.

Numerous studies have attempted to describe mathemati-
cally the ON as a function of the gasoline composition

measured by gas chromatography. The blending of gasoline
is nonlinear in nature, and in general, the developed models
for the ON of the gasoline fuel are empirical in origin and
recognize the nonlinear dependence of the blend octane
number by modeling it with functions containing a linear
part and a nonlinear correction term.

Myers830 established a correlation between the octane
number and readily measurable characteristics of 77 gasoline
samples. A MLR model was developed to express the octane
number as a linear combination of the isoparaffin index, the
aromatic content (volume %), the lead content (g/gal), and
the sulfur content (weight %). The alkyl lead concentration
was shown to be the most important variable, closely
followed by the isoparaffin index. The standard deviations
encountered in engine testing were approximately 0.25 and
0.45 octane number for RON and MON, respectively. A
standard deviation s ) 1.1 ON was obtained for both
calculated properties. The values of the index of determi-
nation (p2) obtained in this analysis were 0.87 for RON and
0.90 for MON, indicating a satisfactory correlation with the
variables selected. To adequately predict the octane numbers,
the use of hydrocarbon mixtures should be limited in the
range of 91-103 RON units.

Meusinger and Moros831 determined the influence of
molecular structure of 240 organic compounds on their
knocking behavior using a nonbinary genetic algorithm (GA).
The molecular structures of the potential gasoline compo-
nents were divided into 16 different structural groups. The
partial ONs for paraffines, naphthenes, olefins, aromatics,
and oxygenates subclasses were calculated. The sum of the
calculated partial octane numbers supplies the ON of the
compound. The results obtained by GA were significantly
better than those obtained by MLR: for paraffins R2

GA )
0.976 (R2

MLR ) 0.910), naphthenes R2 ) 0.950 (0.769),
olefins R2 ) 0.968 (0.920), aromatics R2 ) 0.893 (0.769),
and oxygenates R2 ) 0.929 (0.845), respectively. The
calculated partial ONs allow the quantitative determination
of the influences of the structure modifications on the
knocking characteristics of the gasoline components. In a
further study, Meusinger and Moros832 related the constitu-
tions of more than 300 individual gasoline components to
their knock rating (blending research octane number, BRON).
13C NMR spectra of all compounds were classified into 28
chemical shift regions. The number of individual carbon
signals of the nearly 2500 carbons was counted in each shift
region and was combined with the information about the
presence or absence of the following atoms or functional
groups: oxygen, rings, aromatics, aliphatic chains, and
olefins. These numbers were used as descriptors in the ANN
model (R2 ) 0.891, s ) 15.7). For the validation set of 50
individual chemicals from various organic classes consisting
only of C, H, and O atoms, a good agreement with their
experimentally determined BRON was found (R2 ) 0.870,
s ) 20.2).

Estrada and Gutierrez833 used a generalization method of
topological indices based on a vector-matrix-vector mul-
tiplication procedure to optimize the Balaban J index for
describing the motor octane number (MON) of octane
isomers. The reported correlation coefficient between the
obtained optimal Balaban index J** and MON was 0.983.
A cubic model between MON and J** produced an excellent
correlation with R2 ) 0.992 and s ) 3.51.

The Balaban index, Balaban-like topological indices (the
complement Balaban index, the Harary-Balaban index, the
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quotient Balaban indices of first and second order), their
variable counterparts, and vertex- and edge-connectivity
indices were used in the comparative study of the structure-
motor ON modeling by Nikolić et al.834 The variable indices
produced slightly better linear models than the fixed indices.
The best models obtained were quadratic models with the
Harary-Balaban index and the quotient Balaban index of
second order.

Hosoya835 studied the relationship between the ON of
heptane and octane isomers and various topological indices.
The single parameter correlation with the Balaban (B) and
Wiener (w) indices showed satisfactory statistical results. The
best model reported for the octane isomers was as follows:
ON ) 76.389 + 8.179 (0.3B + 1.1p - 0.6Z) with R2 )
0.964 and s ) 6.56. It was concluded that the highly
branched (small Z index of Hosoya, or low boiling point),
spherically shaped (large), and compact (large polarity
number, p, or high liquid density) gasoline isomers will have
high ON or will burn without knocking, and based on these
results, several candidates of nonane isomers whose ON is
expected to be higher than 100 were suggested.

An analytical method was developed by Albahri et al.836

to predict ONs of petroleum fuels. The minimum input data
for the equations were the boiling point and the specific
gravity; however, when the composition of the mixture in
addition to the boiling point was known, better results were
obtained. Average deviations of about 4-7 for the ON were
observed when evaluated with a wide range of data sets. A
structural group contribution method for modeling the ON
of 200 pure hydrocarbon liquids (ON range of -20 to 120)
was also reported by Albahri.837 The method required
knowledge of only the chemical structure of the molecule.
The average deviations of the models for the RON and MON
of pure hydrocarbon liquids were 4 and 5.7, and those for
the external validation sets were 1.3 (9 compounds) and 1.5
(12 compounds), respectively. The results of two different
sets of structural groups derived from the Joback group
contribution approach were tested and compared.

Podlipnik et al.838 introduced indirect evaluation of mo-
lecular shape similarity. As a first step of the molecular
comparison, a conversion of the 3D-molecular structure to
translational and rotational invariant RDF code was per-
formed. Second, the similarity indices were computed based
on the RDF code comparison for each pair of molecules.
These similarity indices were then used as descriptors for
generating QSAR/QSPR models. In a practical example, the
approach was used to correlate the octane isomer structures
to their ON. The results were comparable to those obtained
by topological indices.

Ghosh et al.839 presented a model that predicts the RON
and MON of a wide variety of gasoline process streams and
their blends including oxygenates based on detailed com-
position. The ON was correlated to a total of 57 hydrocarbon
“lumps” measured by gas chromatography. The model is
applicable to any gasoline fuel regardless of the original
refining process. It is based on the analysis of 1471 gasoline
fuels from different naphtha process streams such as refor-
mates, cat-naphthas, alkylates, isomerates, straight runs, and
various hydroprocessed naphthas. Blends of these individual
process streams were also considered. The model predicts
the ON within a standard error of 1 RON or MON unit and
is applicable to a range of ONs between 30 and 120. Further
improvements in the model predictions are demonstrated by

a data reconciliation algorithm used in tandem with the
predictive model.

ANN models have been developed by Pasadakis et al.840

to determine the RON of gasoline blends produced in a Greek
refinery. The ANN models used the volumetric concentra-
tions of the seven most commonly used fractions in the
gasoline production and their respective RON numbers as
input variables. Additionally, the RON values of the first
five fractions weighted by their concentrations in the blends
were included as input variables. The model parameters
(ANN weights) were presented in a way that enabled the
model to be easily implemented. The predictive ability of
the models yielded an rms error of prediction (RMSEP) less
than 0.2 RON. Based on the ANN models, the effect of each
gasoline constituent on the formation of the blend RON value
was revealed.

A new method for solving QSPR tasks was proposed by
Smolenskii et al.841 based on transition from numerical values
to topological equivalents (TEs) of physicochemical proper-
ties of chemical compounds. The TEs are unambiguously
related to the corresponding properties; for n-alkanes, they
are linear functions of the number of carbon atoms. Since
the TE depends only on the corresponding physicochemical
parameter, it can be calculated for any hydrocarbon using
the same relationships as those known for n-alkanes. The
optimal topological index (OTI) was constructed using the
chemical structure matrix for TEs. For the ONs of alkanes
and cycloalkanes, a model with impressive statistical char-
acteristics [R2 ) 0.999 and s ) 0.829 for the training set (n
) 41), and R2 ) 0.990 and s ) 2.620 for the test set (n )
37)] was derived as an example.

Cetane number (CN) is a measure of the combustibility
of diesel fuel under compression. Like octane number for
gasoline, CN for the diesel measures how quickly it
autoignites under diesel engine conditions. It is rather difficult
to measure the CN properly; therefore, for most practical
purposes, the cetane index is used. It can be calculated on
the basis of the density and distillation range of the oil. Diesel
engines run well with a CN between 45 and 50. After 50,
the performance of the fuel reaches a plateau. The alpha form
of methylnaphthalene is given a standard value of 0, and
cetane (C16H34) is given a standard value of 100. However,
there is very little actual cetane in the diesel fuel. Some fuel
additives used to raise the CN are alkyl nitrates and di-tert-
butyl peroxide, while aromatic additives reduce ignition
quality.

Like octane number, the CN also depends on the molecular
composition of the fuel that can be measured by gas
chromatography (GC) or inferred from different spectro-
scopic methods, such as Fourier transform infrared spec-
troscopy, nuclear magnetic resonance (1H NMR, 13C NMR),
etc. Numerous attempts have been made in the past to
correlate the CN with various physical and chemical at-
tributes of the diesel fuel. These include correlations based
on bulk properties such as API (American Petroleum
Institute) gravity, boiling points, and aniline points. Ladom-
matos and Goacher842 tested 22 empirical CN equations for
their prediction ability using the data for more than 500 fuels
collected from the literature. These equations were used
routinely to monitor CN in activities such as fuel blending
at the refinery. The equations proposed predicted the CN
with s < 2. Untypical diesel fuels, such as vegetable oils
and diesel blends containing alcohols, were predicted less
accurately, indicating that they could be outside the domain
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of these equations. The measured CN of diesel fuels was
found to correlate very well with their aniline point (AP).
According to the authors, the most accurate equation (with
s ) 1.56 for 267 fuels) belonged to the Canadian General
Standards Board containing AP, viscosity, various distillation
temperatures, and the density of the fuel.

Yang et al.843 used a backpropagation ANN to correlate
and predict the CNs of 21 isoparaffins and 120 diesel fuels.
For the isoparaffins, 10 branched paraffins were employed
to train the ANN using the group additivity method to express
the degree of branching. According to the branching positions
in the molecular structure, four carbon groups, plus normal
boiling point, were taken as input elements to train the
network. The input values used (Ni/Nt%) were the fractions
of the number of C atoms in an individual group (Ni) over
the total number of C atoms of that specific isoparaffin (Nt).
The R2 for the test set was 0.97. For the diesel fuels, the
best model was obtained with 8 parameters, viz. density,
viscosity, aniline point, and distillation temperatures (IBP,
10%, 50%, 90%, and FBP), as inputs. The trained ANN
model for the diesel fuels gave R2 ) 0.86 and s ) 1.62. In
a later study, Yang et al.844 used ANNs to correlate and
predict the CN and the density of 69 diesel fuels from
chemical composition. The CN and density were correlated
to 12 hydrocarbon groups in the diesel fuels determined by
liquid chromatography (LQ) and gas chromatography-mass
spectrometry (GC-MS). The best among the tested ANN
architectures for correlating the CN was a general regression
neural network (GRNN). The mean absolute error for the
test set of 21 diesel fuels was 1.23 (CN). Predictive equations
were also developed using the standard MLR method. It was
found that the ANN approach provided better results for
complex nonlinear problems such as the correlation of the
CN with the hydrocarbon type.

Kapur et al.845 developed MLR models for predicting seven
essential physicochemical properties of diesel fuels using
structural parameters as observed by 1H NMR. About 60
commercial diesel samples were included in the study, and
their properties were measured by standard methods. High
quality models (R2 > 0.9) for all studied properties were
obtained. The validation with a separated test set of 20
samples gave equally high R2 values except for the CN (R2

) 0.79). The latter was related to the evident presence of
the cetane improvers in the samples, which would not be
detected by this method. The same group of scientists carried
out an ANN study846 on the same data set to improve the
prediction of the CN. The NMR spectra were divided into
18 structural regions, which were reduced to 8 parameters
using a primary ANN (18:12:8:12:18). The hidden layer
containing eight nodes was used as an input. Six samples
were identified as outliers and removed from the data set.
Coefficient values of R2 ) 0.91 and 0.85 for the training (n
) 36) and the validation (n ) 18) sets were obtained. An
ANN model for the cetane index (CI) showing a much higher
correlation (>0.97) between the actual and predicted CI
values was also developed. The CI, contrary to the CN, is
independent of the presence of ignition improvers.

Ghosh and Jaffe847 developed a simple composition-based
model for predicting the CN of diesel fuels. The model can
be applied to any diesel fuel regardless of the refining process
it originates from, and it is used to support various product
quality predictions for diesel fuels in ExxonMobil’s refineries
worldwide.847 The CN was correlated to nine different
hydrocarbon classes containing a total of 129 different

hydrocarbon “lumps” determined by a combination of
supercritical fluid chromatography, gas chromatography, and
mass spectroscopic methods. A total of 203 diesel fuels
derived from 45 diesel-range refinery process streams and
their 158 commercial blends were considered. The experi-
mental data set was split into training (90% of the samples)
and test (10% of the samples) subsets. A constrained least-
squares minimization problem was solved using the
Levenberg-Marquardt algorithm in order to regress the
parameters of the model. Across all the used data, the model
predicted the CN with the standard error, SE ) 1.25 units,
which is comparable to the experimental error. This result
is also superior to the predictions based on the ASTM D4737
model for CN with the SE ) 3.32 units using this data.

Santana et al.848 have conducted a study on the CN
improvement strategies in diesel fuels. As an essential part
of their research, a ANN QSPR model was created for the
estimation of the CN of individual components of diesel fuel
based on 147 hydrocarbons classified as n-paraffins, isopar-
affins, cycloparaffins, olefins, and aromatics. Two separate
correlations, one for the paraffins and the other for olefins
and aromatics, were made using multilayer perception ANNs
on the molecular descriptors calculated by MDLQSAR.
Separation of the data set found justification from combustion
chemistry. The R2 and s were equal for the models with both
data sets, being 0.89 and 8 CNs, respectively. A few CNs
measured experimentally by the authors were used for
external validation of the models.

Smolenskii et al.849 derived QSPR models for the predic-
tion of the cetane numbers of alkanes and cycloalkanes
introducing a purely theoretical approach similar to their
study of octane numbers841 reviewed above. A recently
proposed computational scheme850 was used to obtain R2 )
0.99998 and s ) 0.117 for the training set of 27 compounds,
and R2 ) 0.99255 and s ) 2.49 for the 44 test set compounds
based on optimal topological indices (OTI) from the chemical
structure matrix designed ad hoc. The accuracy of the
prediction results encouraged the authors850 to apply the
model for the estimation of the CNs of a collection of 180
unstudied hydrocarbons with the number of carbon atoms,
n e 10.

The ON of gasoline and the CN of diesel fuels being in
the center of focus by the refineries have benefited greatly
from the use of prediction models. As an alternative to the
QSPRs using various empirical properties, the more recent
approaches incorporating calculated molecular descriptors
have displayed relatively high accuracy in addition to the
advantages of avoiding expenditure of experimental resources.

6.9. Rubber Vulcanization Rates
A major commercial interest in the rubber vulcanization

process is the efficiency of heterocyclic sulfenamide and
sulfenimide accelerators, which provide a delay interval
before the onset of sulfur cross-linking. The delay is
necessary in processing large rubber items such as tires.
Morita851 found that inductive constants, σ*, correlated
reasonably well with the vulcanization activity of substituted
phenylthio- and anilino-benzothiazole compounds. Two
linear relationships with opposite signs were obtained for
N-substituted phenyl- and N-alkyl-sulfenamides. Longer
scorch delays were observed for phenyl compounds with
electron-withdrawing substituents and for compounds with
sterically hindered alkyl groups. Amino derivatives of higher
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basicity were characterized by faster acceleration rates, higher
cross-linking efficiencies, and longer scorch delays.

Together with colleagues at Flexsys, our group studied
the kinetics of vulcanization of styrene-butadiene rubber.852

QSPR modeling was done both on the parent molecular
accelerators (12 sulfenamides, 11 sulfenimides) and also on
zinc complexes of the accelerators with thiolate fragments.
Experimental characteristics such as the time to scorch, ts2,
and the maximum rate of cure, MXR, measured at 426 K,
were used for correlation with the accelerator structures. The
structures were represented by a variety of descriptors,
including those derived from AM1 semiempirical quantum
chemical calculations. The R2 of the models for both studied
properties ranged from 0.925 to 0.967 while the model
descriptors supported previously proposed mechanisms de-
scribing the origin of the delayed action of fast curing
sulfenamide accelerators. In addition, the results supported
a carbanionic concerted mechanism for the sulfurization and
cross-linking reactions. Based on the gained knowledge, a
new structure was proposed as the active sulfurating inter-
mediate.

6.10. Glass Transition Temperatures
The glass transition temperature, Tg, is a fundamental

characteristic of amorphous polymeric materials: plastics,
glasses, rubber, and other amorphous materials such as
organic light-emitting-diode (OLED) materials. Below the
Tg, the material becomes rigid and brittle because of loss in
relative mobility of its molecules. For cross-linked thermo-
setting plastics, this process is irreversible. Thus, rubber
objects once brought below their Tg will shatter. The Tg

depends on the chain mobility, that is affected by the
molecular weight or length of the polymer molecules, the
flexibility of the chain, and its interactions with other chains.
In addition, Tg is also influenced by the presence of additives,
fillers, and/or impurities. Due to the large and variable size
of polymer molecules, their properties are modeled by
extrapolation from their monomers or repeat units. Most
works handle homopolymers but some copolymers and cross-
linked polymers have also been introduced. The overview
of the theoretical models for the prediction of Tg is sum-
marized in Table 15.

By using the group additive property (GAP) theory, Van
Krevelen853 predicted several polymer properties. In the
framework of this theory, the property under consideration
is assumed to be a scalar sum of the corresponding properties
averaged for the component chemical groups of compounds
with available experimental data. A more universally ap-
plicable atomistic QSPR model was developed by Bicerano802

with R2 of 0.95 and s of 24.65 K for a data set of 320
polymers. The Tg was related to the solubility parameter and
the weighted sum of 13 topological bond connectivity
parameters of the monomer structures. An ANN model was
developed by Sumpter and Noid857 using topological indices
used by Bicerano for a data set of 320 compounds (Tg values
ranging from 50 to 700 K). On the same data, the PropNet
technique was applied, which could predict Tg values with s
) 8.8 K and R2 ) 0.984.858 Koehler and Hopfinger855

combined molecular modeling with a GAP model to utilize
3D-molecular information in estimating the Tg of 30 structur-
ally diverse linear polymers. Tg was considered as a function
of the conformational entropy and the mass moments of the
polymer calculated for the repeating unit, taking into account
intermolecular interactions.856 A highly significant QSPR (R2

) 0.91, s ) 15.6 K) was developed for 35 polymers using
MLR analysis involving backbone and side chain entropies,
backbone mass moments, and the intermolecular energies
of the O- and H+ probes. Wiff et al.854 found a semiempirical
method for predicting the Tg of 178 linear polymers, 12
random copolymers, and selected cross-linked networks,
from their chemical structure. For new moieties not included
in the database, a scaling technique of similar moiety
contributions was proven successful.

Joyce et al.859 used ANNs with error back-propagation
(BPANN) to build models for Tg prediction based on the
monomer structures of 360 polymers. A series of indicator
variable descriptors were calculated based on the SMILES
representation of the monomers. The model predicted the
Tg values for a testing set of polymers with an rms error of
35 K.

Gao and Harmon864 correlated Tg for poly(p-alkyl sty-
renes), polyolefins, poly(alkyl methacrylates), and poly(alkyl
acrylates) with bond radii-based structural parameters based
on the repeat unit. The model provides prediction of the Tg

for both the linear and highly branched polymers and also
allows the extraction of the contribution of hydrogen bonding
in polymethacrylates and polyacrylates. The model resulted
in predictions with R2 > 0.97 and s < 7.5 °C for all the studied
polymer classes.

Waegell and co-workers860,861 described an EVM (energy,
volume, and mass) QSPR model based on molecular
mechanics and molecular dynamics calculations for linear
and branched aliphatic acrylate and methacrylate polymers
with bulky ester substituents. In this approach intra- and
interchain interactions were taken into account directly by
calculating an energy density function related to the cylindri-
cal volume of a 20 monomer unit polymer segment. The
EVM method for 16 linear and branched alkyl acrylate and
methacrylate polymers gave s ) 12 K and R2 ) 0.96.799 The
EVM approach was also applied successfully to a set of
polystyrenes.863 The model correctly quantified the effects
of the substituent position on the phenyl ring that have a
high impact on the Tg. With these works the authors have
argued also for the superiority of class-specific models in
the form of the so-called “designer” models over global
models.

Tan and Rode865 found that the quantum chemical methods
utilizing PM3 and especially AM1 parametrizations led to
superior models compared to those obtained by the
Gasteiger-Hückel method. Partial charges of some important
atoms in the monomer together with the degree of substitu-
tion and chain length of the hydrocarbon group of ester or
amide functions of the monomer were used as descriptors.

Katritzky et al.866 introduced a four-parameter model with
R2 ) 0.928 for 21 medium molecular weight polymers and
copolymers based on their repeat units. The descriptors
selected indicated the importance of intermolecular electro-
static interactions between the polymer chains, followed by
the degree of branching and H-bonding capabilities. On a
larger data set, CODESSA produced a five-parameter cor-
relation (R2 ) 0.946, SE ) 0.33 K mol/g)867 relating glass
transition temperatures (Tg/M) for a diverse set of 88 linear
uncross-linked homopolymers including polyethylenes, poly-
acrylates, polymethylacrylates, polystyrenes, polyethers, and
polyoxides. The descriptors, calculated based on a trimeric
repeating unit, related to the shape/bulkiness of the repeat
units (as reflected by the moment of inertia and the Kier
shape index) and intermolecular electrostatic interactions
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Table 15. Summary of QSPR Modeling of Glass Transition Temperatures, Tg
a

no. compound N (nvalid) methodb model descriptors, nd R2 s (K, °C) R2
valid svalid (K,°C) ref

1 polymers GAP a weighted sum of
scalar quantities of
functional groups

Van Krevelen853

2 linear and
copolymers

190 semiempirical Wiff et al.854

3 diverse linear
polymers

30 MLR conformational entropy
and mass moments,
based on repeat unit

0.91 19 Hopfinger et al.855

4 diverse linear
polymers

35 GAP, MLR 5 (backbone and side
chain entropies,
backbone mass
moments,
intermolecular
energies of the O-

and H+ probes)

0.91 16 Koehler and
Hopfinger856

5 diverse polymers 320 MLR 14 (solubility param,
weighted sum of 13
structural params)

0.95 25 Bicerano802

6 diverse polymers
(50...700 K, incl
tactic and
cross-linked)

320 CNN topological indices
(repeat unit structure)

Sumpter and
Noid857

7 diverse polymers
(50...700 K, incl
tactic and
cross-linked)

320 CNN (repeat unit structure) 0.98 8 Sumpter and
Noid858

8 diverse linear
homopolymers

360 (89) BPANN indicator variables
from SMILES (based
on monomers)

35 Joyce et al.859

9 acrylates and
methacrylates
with ester
substituents

50 molecular mechanics 3 (energy of a polymer
segment
conformation, its
volume, repeat unit
molar mass)

0.83 Waegell et al.860

10 acrylates and
methacrylates
with bulky rigid
substituents

23 (24) EVM (MLR) 3 (same as above) 0.90 20 0.91 27 Waegell et al.861

11 acrylates and
methacrylates

16 (18) EVM (MLR) 3 (same as above) 0.96 12 13 Waegell et al.862

12 polystyrenes 10 (19) EVM (MLR) 3 (same as above) 0.97 5.6 Waegell et al.863

13 poly(p-alkyl
styrenes),
polyolefins

10 structural parameter method bond radii-based
structural parameters
for C, O, and H,
based on repeat unit

0.99 6.1 Gao and
Harmon864

poly(alkyl
methacrylates)
and

10 0.99 7.1

poly(alkyl
acrylates)

10 0.98 7.2

9 0.98 2.9
14 poly(acrylic acid),

poly(methacrylic
acid),
polyacrylamide
and their
derivatives

AM1; PM3 (based on
monomers)

Tan and Rode865

16 medium molecular
weight homo-
and copolymers

21 MLR 4 (CODESSA
descriptors based on
repeat units, AM1)

0.93 3.05 Katritzky et al.866

17 diverse linear
homopolymers
(polyethylenes,
polyacrylates,
polymethylacrylates,
polystyrenes,
polyethers, and
polyoxides)

88 MLR 5 (CODESSA
descriptors based on
monomers, AM1)

0.83 33 Katritzky et al.867

(0.95c) (0.33c) (0.94c)
18 diverse linear

homopolymers
88 MLR 10 topological indices (0.89c) (0.44c) Garcia-Domenech

and de
Julian-Ortiz868

19 diverse linear
homopolymers

88 MLR 5 (∑MV(ter)(Rter), LF,
∆XSB, ∑PEI, Q()

0.91 21 Cao and Lin869

20 diverse linear
homopolymers

84 RBF NN 5 (∑MV(ter)(Rter), LF,
∆XSB, ∑PEI, Q()

0.93 Afantitis et al.870

21 polystyrene
monomers

96 (11) stepwise MLR rigidness of side chain
RSC, stiffness of main
chains SMC, density
of H-bond DHB,
molecular
polarizability effect
MPE

0.92 15 0.89 Yu et al. (Gao)871

22 random styrenic
and ANMA
copolymers

32 (16) stepwise MLR 3 quantum chemical
(DFT) based on
repeat units

0.983 6.92 0.978 Yu et al.872

23 polyvinyls,
polyethylenes,
and
polymethacrylates

22 (38) stepwise MLR 2 quantum chemical
(DFT) based on
repeat units

0.908 26.7 0.906 Yu et al.873
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(accounted for by the most negative atomic charge, HASA-
2/TFSA and FPSA-3). The model yielded a standard error
of 32.9 K for the predicted Tg values. Cao and Lin869 tested
the same set of 88 polymers using their own designed

descriptors expressing chain stiffness and intermolecular
forces for polymers having polar groups to derive a QSPR
with R2 ) 0.906 and s ) 20.86 K. Afantitis870 treated the
same polymers and descriptors, using a radial basis function

Table 15. Continued

no. compound N (nvalid) methodb model descriptors, nd R2 s (K, °C) R2
valid svalid (K,°C) ref

24 polystyrenes,
polyacrylates,
and
polymethacrylates

BPANN 4 (rigidness, chain
mobility,
polarizability, and net
charge on most
negative atom)

0.912 20.5 (rms) 0.912 20.2 (rms) Yu et al.874

25 polyamides 63 (15) MLR B3LYP/6-31G(d) level
descriptors on repeat
units

0.82 22 0.79 23 Gao et al.875

BPANN 0.86 15 0.81 16
26 diverse polymers

(188...475 K)
148 (17) SA, GA, 10 CNNs 10 (topological,

electronic, and
geometric descriptors
based on monomers)

0.98 10 (rms) 0.92 22 (rms) Mattioni and
Jurs876

27 diverse polymers
(188...673 K)

226 (25) SA, CNN 11 (topological
descriptors based on
repeat units)

0.96 21 (rms) 0.96 22 (rms) Mattioni and
Jurs876

28 (meth)acrylic
polymers
(197...501 K)

80 (15) RecNN variable-size labeled
structures

0.98 10 0.92 13 Duce et al.877

29 (meth)acrylic
polymers
(162...501 K)

127 (27) RecNN directed positional
acyclic graphs
(DPAGs)

0.997 3.6 0.90 19 Duce et al.878

30 poly(meth)acrylates 217 (54) RecNN graphical
representation as
labeled trees

0.97 11 0.87 19 Duce et al.879

31 polyphosphates and
polyphosphonates

10 MLR 2 (molecular
mechanics and AM1
based on dimers)

0.88 4.2 Funar-Timofei et
al.880

32 small molecules,
including 24
OLED materials
(73...455 K)

81 (22) GA, MLR 7 (topological, spatial,
electrostatic,
thermodynamic, and
structural)

0.99 8.8 0.98 14 Kim et al.881

33 diverse OLED
materials
(311...468 K)

73 (15) MLR 6 (CODESSA
descriptors, AM1)

0.93 10.7 18 (AAE) Yin et al.882

34 OLED materials
(311...468 K)

80 MLR 5 (topological indices) 0.93 10.5 Xu and Chen883

35 amine-cured epoxy
copolymers

13 MLR 4 (CODESSA
descriptors based on
repeat units, AM1)

0.998 Morrill et al.884

36 polyacrylates and
polymethacrylates

22 MLR 3 (topological) 0.98 8.3 Dai et al.885

37 diverse
homopolymers

251 (20) ANN 8 7 Sun et al.886

38 diverse
homopolymers
(152...550 K)

241 (15) fuzzy set theory 12 structural groups,
based on repeat unit

0.95 19 0.90 30 Sun et al.887

39 diverse
homopolymers
(183...450 K)

235 (10) fuzzy set theory 95 structural groups
and their interactions,
based on repeat unit

0.98 8 0.98 9 Sun et al.888

40 monosaccharides 6 MLR 3 (moment of inertia/
atoms, LUMO
energy, max. partial
charge for an O
atom)

0.99 1 Dyekjaer and
Jonsdottir889

41 polymethacrylates 35 BPANN 4 (3 quantum chemical
(DFT), 1 length of
side chain minus
1.356, based on
repeat units)

0.98 Liu et al.890

stepwise MLR 0.92 15.9
42 linear

homopolymers
261 stepwise MLR 37 signature molecular

descriptors
0.93 28 (MAE) Brown et al.891

43 polyacrylamides 20 stepwise MLR 2 (thermal energy and
total energy using
DFT, based on repeat
units)

0.92 21.7 Liu et al.892

44 L-tyrosine derived
homo, co-, and
terpolymers:
polycarbonates
and polyarylates

100 linear correlation 1
mass-per-flexible-bond
(M/f) of a polymer
repeat unit

0.905 6.4 (AAE) Schut et al.893

45 fluorine-containing
polybenzoxazoles

52 (17) BPANN 3 (chain mobility and
rigidness, and a
group indicator,
based on repeat
units)

0.96 2.35 (rms) 0.956 2.30(rms) Ning894

MLR 0.88 10.5 0.91

a N, number of all compounds; R2, squared correlation coefficient; s, standard deviation. b EVM, energy, volume, and mass; RBF, radial basis
function; GAP, group additive property; SA, simulated annealing; GA, genetic algorithm; OLED, organic light-emitting-diodes; GIM, group interaction
modeling. c Tg/M (K mol/g); AAE, average absolute error; MAE, mean absolute error.
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(RBF) ANN to obtain an improved correlation coefficient
(see Table 15).

Sun et al. conducted a series of works for modeling Tg

values of diverse sets of over 230 homopolymers based on
ANN886 and fuzzy set theory.887,888 Better results were
obtained by the fuzzy theory with consideration of the
interactions between the structural groups expressed as the
entropy of the fuzziness (R2 ) 0.98, s ) 8 K)888 compared
to the model without them (R2)0.83, s ) 25 K).887

Garcia-Domenech and de Julian-Ortiz868 used graph theo-
retical indices based on monomers to predict Tg of a group
of addition polymers by a model with 10 variables for Tg/M
(R2 ) 0.893, SEE ) 0.439). The average error (AAE) in
the prediction of Tg was 12.7%.

Mattioni and Jurs876 developed various CNNs with 10 and
11 descriptors, to predict Tg values for two diverse sets of
polymers based on the monomers and the repeat units,
respectively. The descriptors were selected using simulated
annealing (SA) and genetic algorithms (GA). The test sets
rms errors of the two models were above 21 K.

Kim et al.881 used MLR to predict Tg for 103 molecules
including OLED materials. GA was used to select the model
descriptors (one topological, one thermodynamic, one spatial,
one structural, and three electrostatic). The model was
developed using a randomly chosen training set of 81 and a
prediction set of 22 compounds. R2 for the training set was
0.989, and the AAE was 8.8 K. For the prediction set, R2

was 0.976, and AAE was 13.9 K, respectively.
Yin et al.882 proposed a six-parameter correlation with R2

) 0.927 and AAE of 8.5 K for a diverse set of 73 OLED
materials. For a test set of 15 OLED materials, an AAE of
17.9 K was obtained. The descriptors involved reflect the
effect of chain stiffness, electrostatic interactions, as well as
vibrational motions on Tg.

Dai et al.885 presented a side chain pulled-along model of
polymers to correlate Tg to the chemical structure of 13
polyacrylates and 9 polymethacrylates. Three-parameter
models, which include the number of carbon branches of
side chains (B), the group charge of side chains (C), and the
topological length of side chains (L), were obtained with R2

) 0.989 (s ) 3.8 K) and R2 ) 0.993 (s ) 4.8 K),
respectively. The number of carbon branches of side chains
was used as the descriptor for the stereoeffect. For a common
three-descriptor model covering both the 13 polyacrylates
and the 9 polymethacrylates, the R2 was 0.980 (s ) 8.3 K).

Properties of monosaccharides were modeled by Dyekjaer
and Jonsdottir889 based on molecular descriptors obtained
from molecular mechanics and quantum chemical calcula-
tions. Saccharides exhibit a large degree of conformational
flexibility; therefore, a methodology for selecting the ener-
getically most favorable conformers was developed. The
QSPR for the Tg of 6 monosaccharides including 17
conformations contained 3 descriptors calculated at the
B3LYP/6-31++g level and extracted with the CODESSA
software, R2 ) 0.99, s ) 0.96 °C.

Morrill et al.884 developed a designer QSPR (R2 ) 0.998),
based upon molecular properties calculated using the AM1
semiempirical quantum mechanical method, to predict Tg of
amine-cured epoxy resins based on the diglycidyl ether of
bisphenol A. By applying an ad hoc treatment based on the
elementary probability theory to the QSPR analysis, a method
was developed for computing bulk polymer Tg for stoichio-
metric and nonstoichiometric monomeric formulations. For

the validation of the model predictions, a model polymer
was synthesized.

Xu and Chen883 performed a QSPR study between
topological indices and the Tg of a diverse set of 80 OLED
materials. A five-parameter correlation with R2 ) 0.930 and
an AAE of 7.7 K was obtained through stepwise MLR
analysis with R2

CV ) 0.916. The results were comparable to
those of Yin et al.882

Multilinear QSPR models for series of polyphosphates and
polyphosphonates were reported by Funar-Timofei et al.880

using molecular mechanics and AM1 calculated descriptors
for polymer dimers. R2 of 0.88 was obtained for 10 samples
with the Sterimol B1 parameter and torsion angle C1,
associated with packing preferences and the polymer back-
bone flexibility, respectively.

A method for solving the inverse QSPR problem which
facilitates the design of novel polymers with targeted
properties has recently been presented by Brown et al.891 The
signature molecular descriptor, consisting of a column of
molecular fragments and a column of the occurrences of
these fragments, was used in both the forward and inverse
QSPR approaches on Tg, heat capacity, and density. The
forward stepwise MLR method was employed to develop
QSPRs for Tg of 261 linear homopolymers. Using 37
descriptors, a model with R2 ) 0.93 and R2

CV ) 0.81 (with
mean absolute error of 27.97) was reported. The QSPRs
obtained were used for the inverse task to design a poly(N-
methyl hexamethylene sebacamide) with a desired Tg, which
was not part of the training set.

Duce et al.877,878 predicted polymer properties from
structured molecular representations using recursive neural
networks (RecNN). For this purpose, a hierarchical set of
labeled vertexes connected by edges that belong to subclasses
of graphs, such as rooted trees, constituted the input. This
representation allows variable-size structures with specified
tacticity as input and bypasses the limitations associated with
vectorial representations of data. The data-features are
implicitly generated starting from the structured molecular
representation and according to the specific task. This method
was applied to calculate the Tg of 90 (meth)acrylic polymers
containing alkyl, thiaalkyl, and fluoroalkyl ester groups,
polyacrylamides, and R-substituted polyacrylics with differ-
ent stereoregularity. The mean error of a preliminary hold-
out cross-validation test was in the same range as the
literature data spread (30 K) for stereoregular polymers. The
same approach was applied to the prediction of the Tg of
277 poly(meth)acrylates.879 As an improvement, the molec-
ular representation through hierarchical structures was ex-
tended by two methods, named group and cycle breaking,
in order to render cyclic structures. Standard unique molec-
ular description systems, i.e. Unique SMILES and InChI,
were exploited.

Gao et al.895 developed QSPRs for Tg of 78 polyamides
using both MLR and error back-propagation ANNs. All
descriptors were calculated from molecular structures opti-
mized at the B3LYP/6-31G(d) level. The MLR model had
R2 ) 0.823 and s ) 22.47, R2

test ) 0.792 and stest ) 23.24.
The ANN model was better: R2 ) 0.859 and s ) 14.90, R2

test

) 0.810 and stest ) 16.44. The value of Tg was affected
mainly by the molecular energy and polarity.

Yu et al.871 used a set of new molecular descriptors, the
rigidness of side chain RSC, the stiffness of main chains SMC,
the density of hydrogen bonds DHB, and the molecular
polarizability effect MPE, obtained directly from polystyrenes
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monomer structures, to predict the values of 96 polystyrenes
and generate a QSPR model by stepwise MLR analysis, with
R2 ) 0.920 and s ) 15.20 K. In a following work by the
same authors,872 a QSPR model, based on three quantum
chemical descriptors (R, q+, and Cv) obtained from the
monomers using the density functional theory (DFT), was
developed to predict Tg of random copolymers, such as
poly(styrene-co-acrylamide) (SAAM), poly(styrene-co-acryl-
ic acid) (SAA), poly(styrene-co-acrylonitrile) (SAN), poly-
(styrene-co-butyl acrylate) (SBA), poly(styrene-co-methyl
acrylate) (SMA), poly(styrene-co-ethyl acrylate) (SEA), and
poly(acrylonitrile-co-methyl acrylate) (ANMA). The QSPR
models having R2 of 0.982 and s ) 6.924 K had good
predictive power. These descriptors can reflect the relative
rigidity of the side groups and the chain backbone, the
essential parameters governing the nature of glass formation
in polymers. By carrying out DFT calculations for 60
polyvinyls, polyethylenes, and polymethacrylates repeating
units at the B3LYP/6-31G(d) level, two quantum chemical
descriptors, the molecular traceless quadrupole moment Θ
and the molecular average hexadecapole moment Φ, were
used to predict the Tg.873 A physically meaningful QSPR
model having R2 of 0.908 for the training set and 0.952 for
the test set was generated using stepwise MLR analysis.
Compared with the existing QSPR models, the proposed
model with only two multipole moment descriptors was the
most simple.

Liu et al.890 optimized the structural units of 35 poly-
methacrylates and calculated their quantum chemical de-
scriptors Via the DFT method at the 6-31G(d) level. The
model obtained by BPANN performed better than the one
found by MLR. Four descriptors were selected by the
stepwise regression: the thermal energy, Ethermal, polarizabil-
ity, R, atomic net charge of C6, Q6

C, and, finally, the length
of the side chain minus 1.356, |L - 1.356|, where L ) 1.356
nm is the length of the side chain at which Tg is lowest. The
latter descriptor was the most significant according to the t
test, and its correlation with Tg was R2 ) 0.89.

Liu et al.892 have used DFT calculations to derive descrip-
tors of the repeat units for QSPR modeling of Tg. A model
with two quantum chemical descriptors was selected with
R2 ) 0.92, s ) 21.7 K based on 20 polyacrylamides. The
model descriptors were easily relatable to the relevant
structural features of polymers; for example, the thermal
energy, Ethermal, is larger for longer side chains, decreasing
the Tg, and the more negative the total energy, EHF, the more
it enhances intermolecular forces and the stiffness of the
chains, thus increasing the Tg.

Schut et al.893 have employed a semiempirical method
based on the mass-per-flexible-bond (M/f) principle to explain
the large variation in Tg values in a library of 132 L-tyrosine
derived homo-, co-, and terpolymers. Polymer class-specific
behavior was observed in Tg vs M/f plots and explained in
terms of different densities, steric hindrances, and intermo-
lecular interactions of chemically distinct polymers. The
method was found to be useful in the prediction of polymer
Tg: AAE ranged from 6.4 to 3.7 K for the three polymer
classes that yielded straight lines on the plot. The proposed
method can also be used for structure prediction of polymers
to match a target Tg value, by keeping the thermal behavior
of a terpolymer constant while independently choosing its
chemistry.

Ning894 has successfully correlated Tg of fluorine-contain-
ing polymers (n ) 35, R2 ) 0.96, rms ) 2.35 K) using a

[3-1-1] BPANN with three descriptors: the number of
atoms in the flexible group of the main chain, nA, the total
number of -CF2CF2O- groups in the repeating unit, m, and
the number of certain -CF2- groups, nCF2. The authors
experienced a turning point in Tg near nCF2 ) 3. Therefore,
the final descriptor was defined as NCF2 ) | nCF2 - 3|, and it
can express rigidness of the polymer chain. For the prediction
set of 17 polymers, rms ) 2.3 K.

The extensive research reviewed in this paragraph has
produced useful knowledge toward the discovery of practi-
cally applicable polymeric (bio)materials. QSPRs have a
great potential in this field as a tool for presynthesis Tg

estimation for effective polymer selection.

6.11. Contact Angles for Pharmaceutical Solids
The surface energies of solids are of great technological

importance for interfacial phenomena, such as adhesion,
adsorption, and wettability of compounds. Unlike those of
liquids, the surface energies of solids cannot be determined
directly. Indirect measurements of the surface tension of
solids by contact angle (CA) methods were reviewed
recently.896 Consequently, the prediction of the contact angle
from structure is of considerable value. In pharmaceutical
practice, the contact angle is used for determining and
understanding the performance of a pharmaceutical solid.
This includes the form design, selecting a suitable binder
for a drug to ensure its bioavailability, estimating the
suspension stability between drugs and excipients, and
choosing a suitable coating material. QSARs could thus prove
useful for predicting the wettability of pharmaceutical
powders at an early stage during development of the formu-
lation.

Sheridan et al.897 presented equations to predict surface
properties of 16 pharmaceutical powders of three structural
types including homologous series of alkyl p-hydroxyben-
zoates and imidazoles, and HMG-CoA reductase inhibitors:
all are examples of comparatively high molecular weight
drugs. The descriptors were calculated for structures opti-
mized at the MNDO semiempirical level of the molecular
orbital theory. A relationship with R2 ) 0.808 between the
water contact angle and a set of superdelocalizability indices
for functional groups involved in hydrogen bonding,
∑SIr(HB+), was reported. Two outliers were identified: methyl
p-hydroxybenzoate and L-679,336: both had crystal unit cell
structures different from the other members in their respective
series, which may lead to an unequal distribution of hydrogen
bonding groups on the crystal surface. The predicted results
may therefore depend on the processing of the powder
surface, which would alter the orientation of the surface
molecules and the net surface energy.

A more general model was developed by Suihko et al.898

for 25 structurally heterogeneous pharmaceutical materials.
Molecular descriptors calculated included those derived from
3D molecular interaction fields containing attractive and
repulsive forces between a chemical probe and a target
molecule. Water (hydrophilic), hydrophobic, and carboxyl
oxygen were used as probes. The experimental water contact
angle was modeled using the PLS method employing
fractional factorial design for descriptor selection. Two
models provided promising predictions for use in cutting the
cost of dosage form design. The model based on computed
conformations contained 52 descriptors with R2 ) 0.57, Rcv

2

) 0.42, and the model based on optimized conformations
from the crystal structure database contained 32 descriptors,
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R2 ) 0.80, Rcv
2 ) 0.66. Both models yielded contact angles

with standard deviation of errors of prediction of 15 degrees
for an external test set of 7 pharmaceuticals. The first model
was considered superior in terms of practicality due to the
fact that it was accomplished utilizing only computerized
techniques.

QSPR models for air-water contact angles have also been
used as a measure of hydrophobicity of the material surface
for the design of polymers. For the design of a diverse and
focused library of synthetic biodegradable polymers, impor-
tant properties such as the glass transition temperature, Tg,
and the CA were selected for modeling by Reynolds.899

QSPR equations derived using GA led to the selection of
two molecular topology descriptors of the repeat unit. A
subset of 17 out of 112 polymers was selected for the training
set using a stochastic diversity method, SimSearch-SCA. The
obtained models were tested, with the remaining 95 polymers
giving R2 for the CA between the computed and experimental
values of 0.92. The QSPR models were further used to build
focused libraries with specific values of Tg and CA. The
focused libraries successfully identified polymers falling
within specified ranges of Tg and CA.

7. Summary and Future Prospects
Quantitative structure-property relationship (QSPR) tech-

niques have become indispensable in many aspects of the
molecular interpretation of physical, chemical, biological, and
technological properties. Today it would be inconceivable
for any commercial, governmental, or academic group to
research these fields without the help of sophisticated
calculations. This paper reviews the applicability and power
of the QSPR approaches for the prediction of diverse
properties of chemical compounds and materials. This is due
to substantial progress in the development of new, more
adequate molecular descriptors and methods of derivation
of multiple linear and nonlinear relationships. The QSPRs
are empirical equations for formal interpolation or extrapola-
tion of missing data. In many cases, they also give insight
into the physical interactions and processes determining the
properties of substances. Moreover, the ability to use
exclusively theoretical molecular descriptors has provided
the means to predict properties of molecular structures that
are difficult to determine experimentally or even of those
compounds not yet synthesized.
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1975, 64, 1971.
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(21) Randić, M.; Guo, Xiaofeng; Oxley, T.; Krishnapriyan, H. J. Chem.

Inf. Comput. Sci. 1993, 33, 709.
(22) Katritzky, A. R.; Gordeeva, E. V. J. Chem. Inf. Comput. Sci. 1993,

33, 835.
(23) Estrada, E.; Rodriguez, L. J. Chem. Inf. Comput. Sci. 1999, 39, 1037.
(24) Schultz, H. P.; Schultz, T. P. J. Chem. Inf. Comput. Sci. 2000, 40,

107.
(25) Pogliani, L. Chem. ReV. 2000, 100, 3827.
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(190) Randić, M.; Plavšić, D.; Lerš, N. J. Chem. Inf. Comput. Sci. 2001,

41, 657.
(191) Ivanciuc, O.; Ivanciuc, T.; Balaban, A. T. Internet Electron. J. Mol.

Des. 2002, 1, 252.
(192) Espinosa, G.; Yaffe, D.; Arenas, A.; Cohen, Y.; Giralt, F. Ind. Eng.

Chem. Res. 2001, 40, 2757.
(193) Zhou, C.; Nie, C.; Li, S.; Li, Z. J. Comput. Chem. 2007, 28, 2413.
(194) Zhou, C.; Nie, C. Chromatographia 2007, 66, 545.
(195) Zhou, C.; Chu, X.; Nie, C. J. Phys. Chem. B 2007, 111, 10174.
(196) Yalkowsky, S. H.; Banerjee, S. Aqueous Solubility. Methods of

Estimation for Organic Compounds; Marcel Dekker: New York,
1992.

(197) Meylan, W. M.; Howard, P. H.; Boethling, R. S. EnViron. Toxicol.
Chem. 1996, 15, 100.

(198) Ran, Y.; Yalkowsky, S. H. J. Chem. Inf. Comput. Sci. 2001, 41, 354.
(199) Nikmo, J.; Kukkonen, J.; Riikonen, K. J. Hazard. Mater. 2002, 91,

43.
(200) Benoit-Guyod, J. L.; Andre, C.; Taillandier, G.; Rochat, J.; Boucherle,

A. Ecotoxicol. EnViron. Saf. 1984, 8, 227.
(201) Devillers, J.; Chambon, P. Bull. EnViron. Contam. Toxicol. 1986,

37, 599.
(202) Barratt, M. D. Toxicol. Lett. 1995, 75, 169.
(203) Dearden, J. C. Sci. Total EnViron. 1991, 109, 59.
(204) Dearden, J. C. In AdVances in QuantitatiVe Structure-Property

Relationships; Charton, M., Charton, B. I., Eds.; JAI Press Inc.:
Stamford, 1999; Vol. 2; pp 127-175.

(205) Dearden, J. C. EnViron. Toxicol. Chem. 2003, 22, 1696.
(206) Kitaigorodsky, A. I. In Molecular Crystals and Molecules; Loebel,

E. M., Ed.; Academic Press: New York, 1973.
(207) Mackay, D.; Shiu, W. T.; Bobra, A.; Billington, J.; Chan, E.; Yeun,

A.; Ng, C.; Szeto, F. Volatilization of Organic Pollutants from Water.
U. S. EnVironmental Agency Report PB 82-230939; U. S. Environ-
mental Agency: Athens, GA, 1982.

(208) Simamora, P.; Miller, A. H.; Yalkowsky, S. H. J. Chem. Inf. Comput.
Sci. 1993, 33, 437.

(209) Constantinou, L.; Gani, R. AIChE J. 1994, 40, 1697.
(210) Krzyzaniak, J. F.; Myrdal, P. B.; Simamora, P.; Yalkowsky, S. H.

Ind. Eng. Chem. Res. 1995, 34, 2530.
(211) Katritzky, A. R.; Jain, R.; Lomaka, A.; Petrukhin, R.; Maran, U.;

Karelson, M. Cryst. Growth Des. 2001, 1, 261.
(212) Hanson, M. P.; Rouvary, D. H. In Graph Theory and Topology in

Chemistry; King, R. B., Rouvary, D. H., Eds.; Elsevier Science:
Amsterdam, 1987; Vol. 51, pp 201-208.

(213) Abramowitz, R.; Yalkowsky, S. H. Pharm. Res. 1990, 7, 942.
(214) Charton, M.; Charton, B. J. Phys. Org. Chem. 1994, 7, 196.
(215) Murugan, R.; Grendze, M. P.; Toomey, J. E., Jr.; Katritzky, A. R.;

Karelson, M.; Lobanov, V.; Rachwal, P. CHEMTECH 1994, 24, 17.
(216) Katritzky, A. R.; Lobanov, V. S.; Karelson, M.; Murugan, R.;

Grendze, M. P.; Toomey, J. E. ReV. Roum. Chim. 1996, 41, 851.
(217) Katritzky, A. R.; Maran, U.; Karelson, M.; Lobanov, V. S. J. Chem.

Inf. Comput. Sci. 1997, 37, 913.
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Suzuki, T.; Petrukhin, R.; Karelson, M.; Katritzky, A. R. ARKIVOC
2002, 4, 45.

(241) Katritzky, A. R.; Sild, S.; Karelson, M. J. Chem. Inf. Comput. Sci.
1998, 38, 840.

5782 Chemical Reviews, 2010, Vol. 110, No. 10 Katritzky et al.



(242) Katritzky, A. R.; Sild, S.; Karelson, M. J. Chem. Inf. Comput. Sci.
1998, 38, 1171.

(243) Xu, J.; Chen, B.; Zhang, Q.; Guo, B. Polymer 2004, 45, 8651.
(244) Cocchi, M.; De Benedetti, P. G.; Seeber, R.; Tassi, L.; Ulrici, A.

J. Chem. Inf. Comput. Sci. 1999, 39, 1190.
(245) Cao, C.; Jiang, L.; Yuan, H. Internet Electron. J. Mol. Des. 2003, 2,

621.
(246) Koziol, J. Internet Electron. J. Mol. Des. 2003, 2, 315.
(247) Ha, Z.; Ring, Z.; Liu, S. Energy Fuels 2005, 19, 152.
(248) (a) Xu, J.; Liang, H.; Chen, B.; Xu, W.; Shen, X.; Liu, H. Chemom.

Intell. Lab. Syst. 2008, 92, 152. (b) Holder, A. J.; Ye, L.; Eick, J. D.;
Chappelow, C. C. QSAR Comb. Sci. 2006, 25, 342. (c) Holder, A. J.;
Ye, L.; Eick, J. D.; Chappelow, C. C. QSAR Comb. Sci. 2006, 25,
905.

(249) Liu, Z.-Y.; Chen, Z.-C. Chem. Eng. J. Biochem. Eng. J. 1995, 59,
127.

(250) Gakh, A. A.; Gakh, E. G.; Sumpter, B. G.; Noid, D. W. J. Chem.
Inf. Comput. Sci. 1994, 34, 832.

(251) Zhang, R.; Liu, S.; Liu, M.; Hu, Z. Comput. Chem. 1997, 21, 335.
(252) Karelson, M.; Perkson, A. Comput. Chem. 1999, 23, 49.
(253) Toropov, A. A.; Toropova, A. P. THEOCHEM 2003, 637, 1.
(254) Morgan, H. L. J. Chem. Soc. 1965, 5, 197.
(255) Razinger, M. Theor. Chim. Acta 1982, 61, 581.
(256) Rucker, C.; Rucker, G. J. Chem. Inf. Comput. Sci. 1994, 34, 534.
(257) Toropov, A. A.; Toropova, A. P.; Nesterova, A. I.; Nabiev, O. M.

Chem. Phys. Lett. 2004, 384, 357.
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(455) Kühne, R.; Ebert, R.-U.; Schüürmann, G. J. Chem. Inf. Model. 2006,
46, 636.

(456) Yamashita, F.; Itoh, T.; Hara, H.; Hashida, M. J. Chem. Inf. Model.
2006, 46, 1054.

(457) Lu, G. N.; Dang, Z.; Tao, X. Q.; Yang, C.; Yi, X. Y. QSAR Comb.
Sci. 2008, 27, 618.

(458) Zhou, D. S.; Alelyunas, Y.; Liu, R. F. J. Chem. Inf. Model. 2008,
48, 981.

(459) Toropov, A. A.; Rasulev, B. F.; Leszczynska, D.; Leszczynski, J.
Chem. Phys. Lett. 2008, 457, 332.

(460) Hemmateenejad, B.; Shamsipur, M.; Miri, R.; Elyasi, M.; Foroghinia,
F.; Sharghi, H. Anal. Chim. Acta 2008, 610, 25.

(461) Duchowicz, P. R.; Talevi, A.; Bruno-Blanch, L. E.; Castro, E. A.
Bioorg. Med. Chem. 2008, 16, 7944.

(462) Kim, J.; Jung, D. H.; Rhee, H.; Choi, S. H.; Sung, M. J.; Choi, W. S.
Korean J. Chem. Eng. 2008, 25, 865.

(463) Huuskonen, J.; Livingstone, D. J.; Manallack, D. T. SAR QSAR
EnViron. Res. 2008, 19, 191.

(464) Du-Cuny, L.; Huwyler, J.; Wiese, M.; Kansy, M. Eur. J. Med. Chem.
2008, 43, 501.

(465) Mackay, D.; Shiu, W. Y. J. Phys. Chem. Ref. Data 1981, 10, 1175.
(466) Abraham, M. H.; Andonian-Haftvan, J.; Whiting, G. S.; Leo, A.;

Taft, R. S. J. Chem. Soc., Perkin Trans. 2 1994, 1777.
(467) Staudinger, J.; Roberts, P. V. Crit. ReV. EnViron. Sci. Technol. 1996,

26, 205.
(468) Hine, H.; Mookerjee, P. K. J. Org. Chem. 1975, 40, 292.
(469) Cabani, S.; Gianni, P.; Mollica, V.; Lepori, L. J. Solution Chem.

1981, 10, 563.
(470) Russell, C. J.; Dixon, S. L.; Jurs, P. C. Anal. Chem. 1992, 64, 1350.
(471) ACD/AbsolV; Advanced Chemistry Development, Inc.: Toronto, ON,

Canada, www.acdlabs.com.
(472) Katritzky, A. R.; Mu, L.; Karelson, M. J. Chem. Inf. Comput. Sci.

1996, 36, 1162.
(473) Katritzky, A. R.; Tatham, D. B.; Maran, U. J. Chem. Inf. Comput.

Sci. 2001, 41, 358.
(474) Pierotti, G. J.; Deal, C. H.; Derr, E. L. Ind. Eng. Chem. 1959, 51,

95.
(475) Tsonopoulos, C.; Prausnitz, J. M. Ind. Eng. Chem. Fundam. 1971,

10, 593.
(476) Mackay, D.; Shiu, W. Y. J. Chem. Eng. Data 1977, 22, 399.
(477) Medir, M.; Giralt, F. AIChE J. 1982, 28, 341.
(478) Tochigi, K.; Tiegs, D.; Gmehling, J.; Kojima, K. J. Chem. Eng. Jpn.

1990, 23, 453.
(479) Hansen, H. K.; Rasmussen, P.; Fredenslund, A.; Schiller, M.;

Gmehling, J. Ind. Eng. Chem. Res. 1991, 30, 2352.
(480) Fredenslund, A.; Jones, R. L.; Prausnitz, J. M. AIChE J. 1975, 21,

1086.
(481) Thomas, E. R.; Eckert, C. A. Ind. Eng. Chem. Process. Des. DeV.

1984, 23, 194.
(482) Sherman, S. R.; Trampe, D. B.; Bush, D. M.; Schiller, M.; Eckert,

C. A.; Dallas, A. J.; Li, J.; Carr, P. W. Ind. Eng. Chem. Res. 1996,
35, 1044.

(483) Mitchell, B. E.; Jurs, P. C. J. Chem. Inf. Comput. Sci. 1998, 38, 200.
(484) Rani, Y. K.; Dutt, N. V. K. Chem. Eng. Commun. 2002, 189, 372.
(485) He, J. T.; Zhong, C. L. Fluid Phase Equilib. 2003, 205, 303.
(486) Estrada, E.; Diaz, G. A.; Delgado, E. J. J. Comput. Aided Mol. Des.

2006, 20, 539.
(487) Giralt, F.; Espinosa, G.; Arenas, A.; Ferre-Gine, J.; Amat, L.; Girones,

X.; Carbo-Dorca, R.; Cohen, Y. AIChE J. 2004, 50, 1315.
(488) Xu, H. Y.; Min, J. Q. Chin. J. Struct. Chem. 2008, 27, 491.
(489) Eike, D. M.; Brennecke, J. F.; Maginn, E. J. Ind. Eng. Chem. Res.

2004, 43, 1039.
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(663) Szabo, G.; Guczi, J.; Kördel, W.; Zsolnay, A.; Major, V.; Keresztes,

P. Chemosphere 1999, 39, 431.
(664) Hansen, B. G.; Paya-Perez, A. B.; Rahman, M.; Larsen, B. R.

Chemosphere 1999, 39, 2209.
(665) Dai, J.; Sun, C.; Han, S.; Wang, L. Bull. EnViron. Contam. Toxicol.

1999, 62, 530.
(666) Dai, J.; Xu, M.; Wang, L. Bull. EnViron. Contam. Toxicol. 2000,

65, 190.
(667) Gramatica, P.; Corradi, M.; Consonni, V. Chemosphere 2000, 41,

763.
(668) Tao, S.; Lu, X. X.; Cao, J.; Dawson, R. A. Water EnViron. Res. 2001,

73, 307.
(669) Klamt, A.; Eckert, F.; Diedenhofen, M. EnViron. Toxicol. Chem. 2002,

21, 2562.
(670) Wu, C.-D.; Wei, D.-B.; Liu, X.-H.; Wang, L.-S. Bull. EnViron.

Contam. Toxicol. 2001, 66, 777.
(671) Wu, C. D.; Wei, D. B.; Hu, G. P.; Wang, L. S. Bull. EnViron. Contam.

Toxicol. 2003, 70, 513.
(672) Huuskonen, J. EnViron. Toxicol. Chem. 2003, 22, 816.
(673) Huuskonen, J. J. Chem. Inf. Comput. Sci. 2003, 43, 1457.
(674) Delgado, E. J.; Alderete, J. B.; Jana, G. A. J. Chem. Inf. Comput.

Sci. 2003, 43, 1928.
(675) Wei, D. B.; Wu, C. D.; Wang, L. S.; Hu, H. Y. SAR QSAR EnViron.

Res. 2003, 14, 191.
(676) Liu, G. S.; Yu, J. G. Water Res. 2005, 39, 2048.
(677) Kahn, I.; Fara, D.; Karelson, M.; Maran, U.; Andersson, P. L.

J. Chem. Inf. Model. 2005, 45, 94.
(678) Lu, C. H.; Wang, Y.; Yin, C. S.; Guo, W. M.; Hu, X. F. Chemosphere

2006, 63, 1384.
(679) Gonzalez, M. P.; Helguera, A. M.; Collado, I. G. Mol. DiVersity 2006,

10, 109.
(680) Ivanciuc, T.; Ivanciuc, O.; Klein, D. J. Int. J. Mol. Sci. 2006, 7, 358.
(681) Gramatica, P.; Giani, E.; Papa, E. J. Mol. Graph. Model. 2007, 25,

755.
(682) Duchowicz, P. R.; Perez Gonzalez, M.; Morales Helguera, A.; Dias

Soeiro Cordeiro, M. N.; Castro, E. A. Chemom. Intell. Lab. Syst.
2007, 88, 197.

(683) Lu, G.; Yang, C.; Tao, X.; Yi, X.; Dang, Z. J. Theor. Comput. Chem.
2008, 7, 67.

(684) Katritzky, A. R.; Tamm, T.; Wang, Y.; Sild, S.; Karelson, M. J. Chem.
Inf. Comput. Sci. 1999, 39, 684.

(685) Katritzky, A. R.; Fara, D. C.; Wang, H.; Tämm, K.; Karelson, M.
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